

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

AN UPGRADEABLE AGENT-BASED MODEL
TO EXPLORE NON-LINEARITY AND INTANGIBLES

IN PEACEKEEPING OPERATIONS

by

Wolfgang Lehmann

June 2006

 Thesis Advisor: Thomas W. Lucas
 Second Reader: Arnold H. Buss

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
An Upgradeable Agent-Based Model to Explore Non-Linearity and Intangibles in
Peacekeeping Operations

6. AUTHOR(S) Wolfgang Lehmann

5. FUNDING NUMBERS
 N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER N/A

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Peacekeeping operations (PKO) have become a significant challenge to the German Armed Forces. For the development of
tactics, techniques, procedures and equipment with combat operations, agent-based models have been developed, used and
exploited for many years. Modeling and simulation of PKO, however, is still in a very early stage. This thesis develops an
agent-based model to analyze PKO. Unlike many other multi-agent systems (MAS), it implements the rules of discrete event
simulation. The chosen software architecture makes the model upgradeable and useful for a breadth of future applications. The
model’s open architecture and the underlying principle of loosely coupled components make it easy to change or enhance the
model. The software agents’ design incorporates individuality, which is characterized by personality factors. Furthermore, the
model is data-farmable. Required data inputs into the simulation tool, i.e., PKO scenarios, are formatted utilizing a state-of-the-
art technology called Extensible Markup Language (XML), which facilitates use of the data in nearly all computer software
packages. The model executes multiple runs of multiple scenarios automatically, demonstrating a robust nature. Finally, an
exemplary analysis demonstrates data-farming concepts on the effect of personality factor settings on the potential escalation of
a PKO scenario.

15. NUMBER OF
PAGES

135

14. SUBJECT TERMS
Modeling, Simulation, Peacekeeping Operations, Multi-Agent System, Agent-Based Simulation,
Discrete Event Simulation, Data Farming, Design of Experiment

16. PRICE CODE
 N/A

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

AN UPGRADEABLE AGENT-BASED MODEL
TO EXPLORE NON-LINEARITY AND INTANGIBLES

IN PEACEKEEPING OPERATIONS

Wolfgang Lehmann
Major, German Army

Dipl.-Ing.(FH), Universität der Bundeswehr München, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 2006

Author: Wolfgang Lehmann

Approved by: Thomas W. Lucas
 Thesis Advisor

Arnold H. Buss
Second Reader

James N. Eagle
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Peacekeeping operations (PKO) have become a significant challenge to the

German Armed Forces. For the development of tactics, techniques, procedures and

equipment with combat operations, agent-based models have been developed, used and

exploited for many years. Modeling and simulation of PKO, however, is still in a very

early stage. This thesis develops an agent-based model to analyze PKO. Unlike many

other multi-agent systems (MAS), it implements the rules of discrete event simulation.

The chosen software architecture makes the model upgradeable and useful for a breadth

of future applications. The model’s open architecture and the underlying principle of

loosely coupled components make it easy to change or enhance the model. The software

agents’ design incorporates individuality, which is characterized by personality factors.

Furthermore, the model is data-farmable. Required data inputs into the simulation tool,

i.e., PKO scenarios, are formatted utilizing a state-of-the-art technology called

Extensible Markup Language (XML), which facilitates use of the data in nearly all

computer software packages. The model executes multiple runs of multiple scenarios

automatically, demonstrating a robust nature. Finally, an exemplary analysis

demonstrates data-farming concepts on the effect of personality factor settings on the

potential escalation of a PKO scenario.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs and data herein are free of

computational, logic, and collection errors, they cannot be considered validated. Any

application of these programs or data without additional verification is at the risk of

the user.

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE...1
B. BACKGROUND ..3

1. Bundeswehr in Peacekeeping Operations (PKO)3
2. Complex Adaptive Systems (CAS) ...5
3. Multi-Agent Systems (MAS) ...8
4. Modeling Peacekeeping Operations (PKO).......................................9

C. RESEARCH OBJECTIVE AND METHODOLOGY12
D. ORGANIZATION OF STUDY ..13

II. MODEL DESIGN AND FEATURES ..15
A. OVERVIEW...15
B. GENERAL DESIGN PARADIGMS..16

1. Time Step Simulation versus Discrete Event Simulation (DES) ...17
2. Model-View-Controller Paradigm (MVCP)....................................21
3. Measures of Effectiveness (MOEs)...23
4. Upgradeability..27
5. Random Number Management ..30

C. AGENT DESIGN...32
1. Agent Variables and Features...33
2. The Inner Environment...40
3. Agent Properties and Personality...43
4. Agent Perceptions ..45
5. Agent Goals, Tickets, and Management ..47

D. SCENARIO DESIGN ..53
1. Previous Work..53
2. The Outer Environment in its 2-D Animation54
3. The Use of XML Files ..56

III. EXPERIMENTS, RESULTS, AND ANALYSIS ..61
A. DESIGN OF EXPERIMENT (DOE) ...62
B. OUTPUT ANALYSIS..67

1. General Overview on Output Data ..68
2. Classification Tree Categorical Output Data71
3. Regression Model on Measures of Effectiveness (MOEs)75

IV. CONCLUSIONS AND RECOMMENDATIONS...79
A. CONCLUSIONS ..79
B. RECOMMENDATIONS FOR FURTHER RESEARCH81

1. Upgrades on the Model..82
2. Recommendations on Further Analysis...84

APPENDIX A. GERMAN TO ENGLISH REFERENCE..85

APPENDIX B. SIMULATION OUTPUT..87

 x

APPENDIX C. JAVA CODE ..103

LIST OF REFERENCES..105

INITIAL DISTRIBUTION LIST ...109

 xi

LIST OF FIGURES

Figure 1. Peacekeeping simulation GUI [Erlenbruch, 2002] ..11
Figure 2. Event graph of a multiple server queue [Buss and Sanchez, 2002].................21
Figure 3. Building block structure of the Agent interface’s implementations.................34
Figure 4. UML diagram of the BasicAgent’s variables and methods39
Figure 5. PKO-Agent model depending on Holland’s reactive agent

[Erlenbruch, 2002] ...41
Figure 6. Layer model of the BasicAgent..41
Figure 7. UML diagram of the class BasicInnerEnvironment ..42
Figure 8. UML diagram of the class BasicProperties...45
Figure 9. UML diagram of the class BasicPerceptions...47
Figure 10. Hiles’ agent model [Erlenbruch, 2002]..49
Figure 11. UML diagram of the BasicGoalManager, Goals, and Tickets.........................52
Figure 12. Generalized PRIZREN environment [Erlenbruch, 2002]................................54
Figure 13. Scenario for simulation in a 2-D animation...55
Figure 14. Sample Portion of XML document..58
Figure 15. Scenario for simulation in an XML IDE (Altova XMLSpy)...........................59
Figure 16. Input-output relationship of simulation models...61
Figure 17. Boxplots graphs of the output data ..70
Figure 18. Classification tree model..73
Figure 19. Summary statistics of the classification tree model...74
Figure 20. Summary statistics linear regression model on the main effects75
Figure 21. Summary statistics of the linear regression model with interaction term........76

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Complete information space of simulation input files.....................................64
Table 2. Experiment design for three input factors..66
Table 3. Summary statistics of the output data ..69
Table 4. Experiment design for three input variables ..69

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

ABM Agent-Based Model

ABS Agent-Based Simulation

API Application Programming Interface

aTa AffinityToAction (variable name)

CAS Complex Adaptive System

CD&E Concept Development and Experimentation

CNA Center for Naval Analyses

cTf CloseToFriendly (variable name)

cTi CloseToLeader (variable name)

DES Discrete Event Simulation

EADS European Aeronautic Defence and Space Corporation

FER Force Exchange Ratio

fK timeToFirstKill (variable name)

GUI Graphical User Interface

IDE Integrated Development Environment

IFOR Implementation Force

ISAF International Security Assistance Force

ISSAC Irreducible Semi-Autonomous Adaptive Combat

JDOM No acronym (Java Software package to process XML files)

KFOR Kosovo Force

MANA Map Aware Non-uniform Automata

MAS Multi-Agent Systems

MHPCC Maui High Performance Computing Center

MOE Measure of Effectiveness

MOOTW Military Operations Other Than War

MVCP Model-View-Controller Paradigm

M&S Modeling and Simulation

NPS Naval Postgraduate School

oO ObeyOrders (variable name)

OSCE Organization for Security and Co-operation in Europe

 xvi

OOTW Operations Other Than War

PAX No acronym (Latin word for peace)

PKO Peacekeeping Operations

rA RiskAversion (variable name)

SFOR Stabilisation Force

sI ShockInfluence (variable name)

Simkit No acronym (Software package for DES)

SIRA Simulatiuonsgestützte Rahmenübung

T Training (variable name)

TSS Time Step Simulation

UN United Nations

UNOSOM United Nations Operation in Somalia

UNPREDEP United Nations Preventive Deployment

XML eXtensible Markup Language

 xvii

ACKNOWLEDGEMENTS

The author cannot believe that this project has finally come to a good end.

Without the support of so many good people, this would never have ended successfully.

Out of a great multitude of teachers, advisors, and friends, the following deserve special

mention for the contributions they have made:

To Dr. Tom Lucas. Thank you for your encouragement, guidance, and support

over such a long time. You have gone above the call of duty to make this project a

success. It is such an honor for me having you as my thesis advisor.

To Dr. Arnold Buss. Thank you for developing Simkit, which is such a powerful

simulation tool. Hopefully, my work pays back a little for your guidance on creating a

software architecture that is flexible and open to future upgrades.

To Professor John Hiles. Thank you for catching my increasing interest in the

field of multi-agent systems.

To Dr. Paul and Dr. Susan Sanchez. Thank you for opening my eyes to what a

simulation model can tell me. I’ll never forget our inspiring discussions.

To Captain Michael Margolis and Lieutenant Colonel Dr. Wellbrink. Words

cannot express the whole extent of your support, encouragement, and inspiration. Thank

you very, very much. I am truly blessed to call you my friends.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

EXECUTIVE SUMMARY

Since 2003, the German Federal Armed Forces (Bundeswehr) have been in a state

of continuous transformation. The purpose of this transformation is to increase the

operational and mission capabilities of the Bundeswehr force. In order to reach this goal,

the Bundeswehr’s missions, capabilities, and equipment need to be synchronized with the

available budget. Therefore, the Bundeswehr missions were updated for military

operations other than war (MOOTW), such as peacekeeping operations (PKO) and peace

support—including the war against terror. These updated mission types now serve as the

basis for current Bundeswehr doctrine. The Bundeswehr is undergoing a continuous

process of self-evaluation, and thus continuous transformation, where future capabilities

and force structure are determined by the ever-changing “most likely” mission set.

While the methodology of Concept Development and Experimentation (CD&E) is

critical to the transformation process, Modeling and Simulation (M&S) also serves as an

important analytical methodology for the Bundeswehr. M&S supports CD&E

methodology in four major areas:

1) Analyzing missions and field exercises.

2) Evaluating courses of actions (wargaming).

3) Testing innovative concepts.

4) Supporting a multitude of analyses (e.g., analysis of capabilities,
fulfillment of demand, and procurement).

The Bundeswehr Concept points out that the use of M&S supports process

evaluation, validation, and verification. Through an iterative approach, Bundeswehr

efficiency is increased. Therefore, M&S is an important tool for

Bundeswehr transformation.

PKO M&S is in its infancy. Since classical combat models do not facilitate PKO

M&S, the development of new tools is necessary. Multi-Agent Systems (MAS) are

simulation models that consist of software entities called “agents.” In information

systems and artificial intelligence, software agents are widely understood to be

representations of decision-making entities. There are a variety of software agents, of

 xx

which the class of reactive agents was chosen for the modeling of PKO. For such agents

modeling a PKO scenario, previous work has demonstrated a distinction between outer

and inner environments to be a useful principle. In this context, the outer environment

would be the representation of a real-world, peacekeeping scenario. On the other hand,

the inner environment only exists inside an agent. The inner environment is the

representation of the agent’s perceptions. The basic principle of MAS is based on the

fact that even if individual strategies of single agents are simple, through independent

activities the behavior of the system as a whole may become complex. The actions of

individual agents, and the interactions between multiple agents, are based on factors such

as their perceptions, inscribed rules, goals, and intentions.

Building upon previous work, this thesis develops a MAS tool with the following

key features:

1) It is based on a discrete event simulation (DES) approach.

2) It is based on a simulation package for DES called Simkit.

3) It has a flexible, open architecture that facilitates further upgrades.

4) It follows the model-view-controller paradigm.

5) It facilitates data-farming techniques.

The flexible building block structure of Java interfaces was chosen for the

architecture of this tool due to Java’s ability to facilitate upgradeability. The tool’s

architecture facilitates enhancement of single elements without having to change the

other elements. For example, Agent (simulation entities are displayed in italics) is a Java

interface that provides a frame for various implementations. The implementation

provided in this model is conducted in the BasicAgent class. Future implementations of

the Agent interface may be incorporated in the model without making fundamental

changes throughout the entire program.

The model takes advantage of an animation package provided by Simkit. The

following figure depicts a scenario in a two-dimensional (2-D) representation. The small

squares represent humans—the blue ones peacekeepers, the red ones demonstrators.

Diamonds represent leaders. Flags represent the base of each side and the ellipses are the

objectives. As the reader can observe, the group of peacekeepers are at their objective,

 xxi

whereas the demonstrators need to pass the peacekeepers on their way towards the red

objective. As soon as the peacekeepers sense demonstrators (and vice versa), the events

begin to escalate—to include possible weapon discharges in the air and discharges aimed

at person entities.

Scenario for simulation in a 2-D animation

The agents’ individuality is characterized by seven personality factors:

CloseToFriendly (cTf), ObeyOrders (oO), CloseToLeader (cTl), AffinityToAction (aTa),

RiskAversion (rA), ShockIfluence (sI), and Training (t). In an exemplary analysis, this

thesis demonstrates how the model facilitates data-farming techniques. Out of these

seven personality factors, three (cTf, aTa, and rA) were picked to apply a two-level, full

factorial design. Each of the resultant eight scenarios was replicated 100 times, for a total

of 800 computational experiments.

To sum up the overall results of the exemplary analysis, the combination of a low

aTa and a high rA is very unfortunate for our analysis since the situation does not escalate

(scenarios s2 and s6)—for PKOs a highly desirable outcome. However, analysis of

single runs with such settings show that the red agents finally reach their objective;

 xxii

i.e., pass the group of blue agents whose duty it is to keep them from getting there. The

possibility of using force needs to be considered with the ability and the attitude to do so,

if necessary. The results of other combinations of input variables are shown in the

following boxplot diagram. The measure of effectiveness (MOE) for the eight scenarios

(i.e., the y-axis) is the difference between the time of the first detection and the time of

the first kill.

0
20

40
60

80
10

0
12

0
14

0

s1 s2 s3 s4 s5 s6 s7 s8

Boxplots of output data for scenario s1 ... s8Boxplots of output data for scenario s1 ... s8

scenarios

Boxplots of output data for scenario s1 ... s8

scenarios

M
O

E
=

fK
 -

fD

Boxplots graphs of the output data

In order to study different combinations of input factors, this thesis uses two

common data-farming techniques: a classification tree and a linear regression model.

Classification tree model: Applying the classification tree technique enables

answering the following question: Which one of the three input factors has the greatest

effect on the occurrence of kills? As it turns out, it is aTa. The second most influential

variable is rA, followed by cTf. Furthermore, the tree model confirms the conclusion that

the combination of aTa low and rA high results in no kills. On the other hand, if rA is

 xxiii

low and aTa is high, the model always suggests a kill, with a misclassification rate of

12%, no matter the setting of cTf. The attitude of soldiers represented by this input

setting is definitely unfortunate for peacekeeping missions. The group of peacekeepers

may be successful in keeping the crowd of demonstrators from reaching their objective;

however, only at the price of people being killed.

Linear regression model: An MOE was defined in this analysis as the time to

the first kill subtracted by the time to the first detection. In order to build a linear

regression model, only those data points that included at least one kill can be used. The

question here is: “Given a kill, what is the influence of the input factors on the MOE?”

For this subset of complete output data, the linear regression model suggests that rA is the

most influential input factor, followed by cTf and aTa. Also, there is a significant

interaction between aTa and rA. All factors (except for the interaction term) are positive,

thereby indicating that increasing each one results in a greater MOE. In other words, the

model suggests that, given a kill, increasing the aTa of all agents causes the situation to

escalate slower. This is a surprise. There is no intuitive explanation to this finding.

Further research needs to be undertaken in order to gain more insight into this

phenomenon. Such surprises that cannot be explained immediately are not new to the

world of agent-based simulation (ABS). In fact, the purpose of ABS is often to generate

questions rather than answers. Through discussion of these questions with modelers,

analysts, and other experts, decision makers may glean more insightful knowledge on the

subject matter.

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE

Since 2003, the German Federal Armed Forces (Bundeswehr) has been in a

process of continuous transformation. The goal of this transformation process is to

increase the mission capability of the Bundeswehr force. In order to reach this goal, the

missions, capabilities, and equipment of the forces need to be synchronized with the

available budget. Therefore, the Bundeswehr’s missions were reprioritized and military

operations other than war (MOOTW), such as peacekeeping, peace support, etc.—

including the war on terror—were determined to be its new main focus. Since the budget

is limited, anything else is of secondary importance. Consequently, the Bundeswehr is

undergoing a process of constant transformation where future capabilities and the force

structure are determined by the “most likely” missions.

In this respect, the major challenges for the Bundeswehr currently are:

1) Adjusting the course of the forces as a whole to the reprioritized set of
missions in order to make them fit for combined operations.

2) Improving the joint forces’ capabilities rather than the capabilities of the
services—that is, applying a joint mindset and joint actions.

3) Restructuring the forces as a whole into three categories: intervention
forces, stabilization forces, and support forces.

4) Realizing network centric warfare capabilities in order to become fully
interoperable in multinational coalitions.

5) Adapting a new mission approach, including the presence of specific
capabilities for limited durations in dynamic situations.

6) Changing the force structure so that formations can be assigned to
missions as they are.

7) To undertake this transformation process while continuing to support
missions worldwide.

Apart from the conceptual objectives, the Bundeswehr is already highly engaged

in peace support and peacekeeping operations (PKO). At the present time, it is involved

in missions on three continents with a total number of approximately 6,500 personnel.

This number has been slowly and consistently increasing over the past ten years.

2

Consequently, the German Defence Policy Guidelines (Verteidigungspolitische

Richtlinien) mention first among other Bundeswehr missions that:

International conflict prevention and crisis management—including the
war against terror—are the most likely missions of the German forces and
a challenge of particular importance. These missions determine
capabilities, command and control, availability and equipment of the
Bundeswehr. These missions are not very different from missions in
support of allies and may develop into such. Both types of missions
require the same range of military capabilities. [Federal Minister of
Defence, 2003]

In this environment of continuous transformation, Modeling and Simulation

(M&S) has developed into a very important field to the Bundeswehr. The Bundeswehr

Concept (Konzeption der Bundeswehr) states:

Concept Development and Experimentation is a substantial methodology
to the implementation of the transformation process. This methodology
allows the identification of innovation potential, the evaluation of its
relevance for the Bundeswehr, the examination of its reliability, the
exploration of its effectiveness and thus the development of a solution for
future concepts, methods, structures and/or systems. […] Concept
Development and Experimentation supports the transformation of the
Bundeswehr taking advantage of modeling and simulation by:

1) Analyzing missions and field exercises.

2) Evaluating courses of actions (wargaming).

3) Testing innovative concepts.

4) Supporting all kinds of analysis, e.g., analysis of capabilities,
fulfillment of demand and procurement.

The consequent application of Modeling and Simulation allows an
evaluation of various processes, to redesign them in order to make them
more efficient and thus can be a support to the whole transformation
process. [Federal Minister of Defence, 2004]

The modeling of PKO, however, is still in its very early stages in the Bundeswehr

and around the world. Previous approaches to model peacekeeping scenarios with

modified combat models showed that there are very rigid bounds. One example is in the

use of measures of effectiveness (MOEs). In many combat models the number of killed

agents in any given fighting force, or the force exchange ratio (FER), determines the

3

result(s) of a simulation run. Consequently, the underlying goal on both sides is to cause

as many casualties on the enemies’ side as possible. This approach is very unfortunate

for PKO. In peacekeeping scenarios, usually at least one side tries to avoid any

casualties. Therefore, an analyst who wants to use a combat model to conduct analysis

on peacekeeping is very limited. Many scenarios may even be impossible to be

simulated. In the scenarios that can be simulated, the output may not contain any

measures of interest. Therefore, there is a real need for models that are designed from the

beginning to model MOOTW.

“Agent based simulation of German peacekeeping operations for units up to

platoon level” was a first step. Erlenbruch [2002] executed an agent-based model (ABM)

of PKO, thereby showing that ABMs are capable of simulating peacekeeping scenarios.

Unfortunately, the current version of Erlenbruch’s model does not contain features that

allow for the creation of large quantities of data to be analyzed and synthesized. In order

to thoroughly analyze a given scenario, the model needs to be uncoupled from the

graphical user interface (GUI) and the output data needs to be data-farmable.

“Data Farming is the process of using a high performance computer or computing grid to

run a simulation thousands or millions of times across a large parameter and value

space.” [Wikipedia, http://en.wikipedia.org/wiki/Data_farming, June 2006] A software

design that allows further enhancements is also desirable. Since the German Army is

interested in the simulation of PKO, the logical next step is to conduct a redesign of

Erlenbruch’s model to facilitate data farming and make the model extensible.

B. BACKGROUND

1. Bundeswehr in Peacekeeping Operations (PKO)

In 1990, after a short period of international negotiations, Germany was reunified.

For Germany, the results of World War II were finally overcome and the country

regained its full sovereignty. For the Bundeswehr, it was the beginning of a period of

change that continues to this day. The former East German forces, the National People’s

4

Army (Nationale Volksarmee), had to be integrated with the Bundeswehr, while the total

number of forces, both personnel and material, had to be reduced drastically according to

the 2 + 4 Treaty.1

The German government soon learned that full sovereignty is accompanied by

increased responsibility. The German armed forces—initially introduced to defend the

country—were now ordered to participate in United Nations (UN) missions. Although

the Bundeswehr was struggling with lower budgets, changes in force structures, and force

reductions, the German government nevertheless eventually started sending troops to

various places around the world. In 1992, for example, the German Army’s

Medical Corps established a field hospital in Cambodia. Only two years later,

1,700 German soldiers were stationed in Belet Uen, Somalia, to participate in the

UNOSOM2 mission. In the aftermath of the Gulf War, Germany also provided

helicopters to support the UN Special Commission for the identification and destruction

of chemical, biological, and nuclear weapons in Iraq. Currently, the Organization for

Security and Co-operation in Europe (OSCE) mission to monitor the cease-fire in

Georgia is supported by Bundeswehr medical personnel and observers. Since

December 1996, Germany has sent more soldiers on the various UN missions in the

former Yugoslavia, such as IFOR,3 SFOR4 (both in Bosnia-Herzegovina), UNPREDEP5

(Macedonia), and KFOR6 (Kosovo), than any other European country. On

February 10, 2003, the 1st German-Dutch Corps took over ISAF7 command and

succeeded the Turkish Army as lead nation to the UN mission in Afghanistan.

[http://www.einsatz.bundeswehr.de/C1256F1D0022A5C2/CurrentBaseLink/W2698QP34

02INFODE#headerblock, June 2006]

1 The “2+4 Treaty” of 12 September 1990 is the document by which the four former occupying

powers, USA, Great Britain, France, and the Soviet Union, ceased to exert their rights in Germany.

2 United Nations Operation in Somalia.
3 Implementation Force (NATO-led multinational force in Bosnia and Herzegovina, 1995 - 1996)
4 Stabilization Force (NATO-led multinational force in Bosnia and Herzegovina, 1996 - 1998)

5 United Nations Preventive Deployment.

6 Kosovo Force.

7 International Security Assistance Force.

5

Today, Germany has the second largest number of troops engaged in various UN

PKO throughout the world. German forces have been changing continuously since the

beginning of the Cold War, and its end forced the Bundeswehr to prepare nearly

overnight for missions other than the defense of Germany proper.

For the Bundeswehr, PKO was the catalyst for these reforms. Procurement of

new weapon systems and new, compatible methods of communication were necessary.

However, the first change was an effort to revise the mind-set of personnel. New training

concepts had to be developed to adequately prepare officers and enlisted personnel for

their tasks in PKO.

2. Complex Adaptive Systems (CAS)

Previous work has proven that it is legitimate to think of peacekeeping scenarios

as CAS. In computer simulations CAS are usually modeled as multi-agent systems

(MAS). For a thorough study of CAS and MAS the reader may find useful

recommendations in the List of References. Wellbrink (2003) in his dissertation and, in

particular, Erlenbruch (2002) in his thesis summarize a set of definitions and derivations

on the interdependence of CAS and MAS. To make it easier for the reader to get an idea,

a short summary of definitions is provided in this work.

Wellbrink points out that intense research of CAS at the Santa Fe Institute goes

back to the mid-1990s. He named John Holland as the father of genetic systems and

provides Waldrop’s ten most important points of Holland’s lecture:

1) First each of these systems is a network of many agents acting
in parallel.

2) Furthermore, the control of a complex adaptive system is highly
dispersed. There is no master neuron in the brain, for example, nor
is there any master cell within a developing embryo. If there is to
be any coherent behavior in the system it has to arise from
competition and cooperation among the agents themselves.

3) Second, a complex adaptive system has many levels of
organization, with agents at any one level serving as building
blocks for agents at a higher level. A group of proteins, lipids, and
nucleic acids will form a cell; a group of cells will form a tissue; a
collection of tissues will form an organ; etc.

6

4) Furthermore, said Holland—and this is something he considered
very important—complex adaptive systems are constantly revising
and rearranging their building blocks as they gain experience.
Succeeding generations of organisms will modify and rearrange
their tissues through the process of evolution. The brain will
continually strengthen and weaken myriad connections between its
neurons as an individual learns from his or her encounters with
the world.

5) At some deep, fundamental level, all these processes of learning,
evolution and adaptation are the same. And one of the
fundamental mechanisms of adaptation in any given system is this
revision and recombination of the building blocks.

6) Third, he said, all complex adaptive systems anticipate the future.

7) More generally, every complex adaptive system is constantly
making predictions based on its various internal models of the
world - its implicit or explicit assumptions about the way things
are out there. Furthermore, these models are much more than
passive blueprints. They are active. Like subroutines in a
computer program, they can come to life in a given situation and
‘execute,’ producing behavior in the system. In fact, you can think
of internal models as the building blocks of behavior. And like
any other building blocks, they can be tested, refined, and
rearranged as the system gets experience.

8) Finally, said Holland, complex adaptive systems typically have
many niches, each one of which can be exploited by an agent
adapted to fill that niche.

9) And that, in turn, means that it is essentially meaningless to talk
about a complex adaptive system as in a state of equilibrium: the
system can never get there. It is always unfolding, always in
transition. In fact if the system ever does reach equilibrium, it isn’t
just stable. It’s dead!

10) And by the same token, there’s no point imagining the agents in
the system can ‘optimize’ their fitness, or their utility, or whatever.
The space of possibilities is too vast; they have no practical way of
finding the optimum. The most they can ever do is change to
improve themselves relative to what the other agents are doing. In
short, complex adaptive systems are characterized by
continuous novelty.

[Waldrop, 1992, p. 145]

In order to prove that there is no such thing as a consistent definition, Wellbrink

provides Nobel Price winner Gell-Mann’s explanation of CAS:

7

A complex adaptive system acquires information about its environment
and its own interaction with that environment and its own interaction with
that environment, identifying regularities in that information, condensing
those regularities into a kind of “schema” or model, and acting in the real
world on the basis of that schema. In each case, there are various
competing schemata, and the results of the action in the real world feed
back to the influence the competition among those schemata.
[Gell-Mann, 1994]

Wellbrink concludes that some researchers call the CAS approach the third way

of doing research. Though providing insight to a problem domain, CAS do not function

sufficiently as forecasting tools. Moreover, they are useful tools that show possible

interactions and may produce emergent behavior that could potentially occur at

some point.

Erlenbruch brought PKO and CAS into a close relationship. Moreover, he built

on the hypothesis that a PKO actually is best modeled by a CAS. In order to justify this

claim he applied the above definitions as follows:

Complex adaptive systems are described in detail because the author
believes that peacekeeping operations can be modeled as CAS. PKOs are
dynamic systems composed of many nonlinearly-interacting parts.
Entities in PKOs can be aggregated to soldiers, commanders,
demonstrating civilians, and fearful children for example. Tagging takes
place in PKOs, a number of soldiers belong to a platoon commanded by a
platoon leader, and demonstrators build a group with a common goal. The
interacting groups are composed of a number of nonlinearly interacting
parts; sources include feedback loops in command and control hierarchy,
interpretation of opponent actions, adaptation to opponent actions,
decision-making process, and elements of chance. There are flows
between the individuals in PKOs; these flows are mostly information. The
individuals in these operations are also diverse; on both sides there are
leaders and followers, heroes and individuals driven by fear. All
participants in a PKO have their own internal model, which is created by
their environment, and by the way they realize it. And finally the
individuals use building blocks to represent their view of the surrounding
environment. The building blocks for the soldiers depend on their training
experiences and their orders; those of the civilians depend on their
ideology, goals, and information. In conclusion: Peacekeeping operations
possess all features of complex adaptive systems. Forces and groups are
composed of a number of nonlinearly interacting parts and at least the
forces are organized in a command and control hierarchy; local action,
which often appears disordered, induces long-range order; groups, in order
to fulfill their goals, must continually adapt to a changing environment.

8

There is no master “voice” that dictates the actions of each and every
entity; and so on. [Erlenbruch, 2002]

Given these illustrations the reader may get an idea why it is worth to make

another attempt to model peacekeeping scenarios as a CAS.

3. Multi-Agent Systems (MAS)

Among the modeling and simulation community it is widely understood that CAS

can be designed as MAS. As a matter of fact, one hardly finds a definition for both terms

that clearly distinguishes between each other. In this work, we understand an MAS to be

a computational tool designed to model some sort of a CAS.

In information systems and artificial intelligence software, agents are widely

understood as representations of decision-making entities. Agents are created to perform

tasks and they feature some combination of the following selected properties:

1) autonomy

2) activity

3) communicability

4) adaptability

5) mobility

Agents’ properties are defined in terms of their tasks and their environment,

which influences them and at the same time is affected by their behavior. Depending on

the combination of tasks and the environment, the literature distinguishes between

various categories of agents. Based on Wooldridge and Weiss, Erlenbruch named three

of these categories:

1) Reactivity: intelligent agents are able to perceive their
environment, and respond in a timely fashion to changes that occur
in it in order to satisfy their design objectives;

2) Pro-activeness: intelligent agents are able to exhibit goal-directed
behavior by taking the initiative in order to satisfy their design
objectives;

3) Social ability: intelligent agents are capable of interacting with
other agents in order to satisfy their design objectives.
[Erlenbruch, 2002]

9

Now, what makes an MAS is the fact that even if the individual strategies of the

single agents are simple, through their independent activities the behavior of the whole

system may become very complex. Therefore, any kind of outside control must be

eliminated. The interaction of agents is solely based on their inscribed rules, goals,

intentions, and the perception of their environment. Usually, the outcome of an MAS is

highly nonlinear. Because of the degree of the nonlinearities, intangibles, and

unexpected outcomes, surprise has become the main focus of those analysts who use

ABMs in military simulations. As a matter of fact, ABMs have been designed with their

programmers expecting them to generate some output that would surprise the analyst. In

an approach of backward-thinking “the analyst envisions an outcome and traces how this

outcome might have become possible.” [Wellbrink, 2003]

We leave this brief introduction on MAS with a quote of John Holland’s:

I just love these things where the situation unfolds and I say, ‘Gee whiz!
Did that really come from these assumptions!?’ Because if I do it right, if
the underlying rules of evolution of the themes are in control and not me,
then I’ll be surprised. And if I’m not surprised, then I am not very happy,
because I know I’ve built everything in from the start. [Holland in
Waldrop, 1992]

4. Modeling Peacekeeping Operations (PKO)

Although traditional military exercises gave way to exercises in MOOTW, M&S

in the Bundeswehr remained mostly unaffected until 2000. For example, SIRA,8 a tool

for advanced tactical training of a battalion staff in traditional combined-weapons

missions, was recently enhanced in order to simulate peace support operations. The

Officer Training Center of the German Army provides a detailed overview of the system

and its use. [http://www.offizierschule.de/hptzh/sira/, March 2003]. A wider overview

on M&S in the German Army is given by [Stolte, 2001].

Although a variety of simulations for different combat missions are available, the

simulation of PKO is still in its infancy. Project Albert is a good example. “The

Marine Corps Warfighting Lab’s Project Albert is the research effort to assess the general

applicability of the study of complex adaptive systems to warfare, and to provide new

8 Simulation Based Field Exercise (Simulationsgestuetzte Rahmenuebung).

10

methodologies for investigating the results of running such models, and incorporating

those results with other, more traditional, methods of analysis.”

[http://www.projectalbert.org, March 2003] In annual workshops, military simulation

analysts from various countries use relatively simple ABMs to address many

post-Cold War issues. Project Albert working groups have successfully managed to

model specific peacekeeping scenarios and were able to answer operational questions

using modified models that were originally designed to model combat operations.

[Horne, 2002]

Participating in Project Albert, the Bundeswehr funded the development of PAX.9

PAX is a model that was designed to explore the development and escalation of violence

in a given food distribution scenario. The primary focus of this model is the distribution

of food, which is a very specific scenario in PKO. EADS10 Dornier has developed the

model to a prototype status, scientifically supported by the University of Passau

(Operations Research Department), Germany, and the University of Zurich (Social

Psychology Department), Switzerland. A time continuous approach allows the use of

differential equations in the PAX model for some of its variables, e.g., fear.

Unfortunately, PAX is a proprietary product, and further development will require the

assistance of the developers.

Another simulation was developed at the U.S. Naval Postgraduate School (NPS)

in April 2002. The “Agent based simulation of German Peacekeeping Operations for

Units up to Platoon Level” [Erlenbruch, 2002] is a MAS that follows an event-driven

approach and is based on the software package Simkit11 (also developed at NPS). [Buss,

2001] This model was designed to simulate a generalized scenario in which a unit of

peacekeepers has to prevent a mob of demonstrators from reaching a certain area of a

historic old town (Prizren, Kosovo). Figure 1 shows the Graphical User Interface (GUI)

in which the scenario is displayed. The peacekeepers (leaders and followers) and the

9 Pax is the Latin word for peace. No other explanation for this name was found in the references.
For more information on the use of this model see [Horne, 2003].

10 European Aeronautic Defence and Space Corporation.

11 Simkit is a software package for creating Discrete Event Simulation models. The Simkit homepage
at http://diana.gl.nps.navy.mil/Simkit/ provides an overview on the package.

11

demonstrators (followers and leaders; armed and unarmed) are modeled as software

agents. Obstacles like rivers, buildings, barbed wire, etc., are software objects, combined

to represent the terrain in which the scenario takes place. The user has the opportunity to

call for reinforcement (armored personnel carriers or infantry fighting vehicles) on the

blue side.

Figure 1. Peacekeeping simulation GUI [From Erlenbruch, 2002]

Figure 1 shows a standard scenario displaying a group of demonstrators, located

at (310, 200), who will cross the river on one of the bridges and advance towards their

objective at coordinates (70, 90), which is located on a plaza between some buildings.

The peacekeepers, located at (60, 120), are advancing to their objective at (100, 130) and

will try to keep the demonstrators from reaching their objective. Agents modeling either

peacekeepers or demonstrators are characterized by six personality properties (closeness

to friendly, obey orders, closeness to leader, affinity to action, risk aversion, and

shock influence) and a training level. Each of these properties can take on different

integer values and influence the agent’s behavior. The current MOE is a weighted sum of

the number of protestors who reached their objective, the number of injured persons (blue

and red) and the number of people killed (blue and red).

12

C. RESEARCH OBJECTIVE AND METHODOLOGY

The research objective of this thesis is to obtain a discrete event ABS of PKO in a

data-farming environment. This objective builds on previous work, such as Erlenbruch’s

ABS of German PKO at up to platoon level. Previous models of PKO show that it is

possible to model PKO scenarios with ABMs; however, in order to be useful analysis

tools, they failed to offer data-farming capabilities. This thesis addresses that gap.

Moreover, it proves the model’s data-farming capabilities in an exemplary analysis.

The scope of this thesis embraces:

1) The design and programming of relevant software.

2) The development of new MOEs for PKO modeling.

3) The design of an experiment for an exemplary analysis.

4) An exemplary analysis on the agents’ personality factors.

The research starts with the design of a discrete event-driven ABS. To realize

data-farming capabilities, the software is to follow the model-view-controller paradigm in

order to serve as an analysis tool. Erlenbruch’s general assumptions can be applied.

However, the focus is rather on the model’s ability to be data farmed than on

user-friendly GUIs. The software includes the design and coding of input and output

tools in order to make data farming user-friendly.

One or more new MOEs would be desirable. By their nature, peacekeeping

missions are fundamentally different from combat operations; casualties are not always

the correct focus. There should be other quantifiable indicators to describe the success or

failure of the mission. These MOEs always apply to the specific scenario they are

defined for. The question obviously is: How can success or failure of the mission be best

quantified? What number—if known—tells us the most about mission success?

As discussed before, it is nearly impossible to simultaneously study the effects of

all model factors over their full range (as in a full factorial design). The model presented

in this thesis has four different types of agents: leaders and followers, each of which can

be red or blue. Each agent has six characteristics (factors) and can be instantiated “one to

n” times. Any factor needs to take on at least three levels to identify nonlinear responses.

13

Eventually, advanced experimental designs may be necessary since it is obvious that full

factorial designs cannot be carried out. The exemplary analysis is meant to prove that the

model actually is data-farmable and to set a starting point for further research.

Screening techniques going along with advanced statistical techniques of data

analysis may generate insight in the nature of PKO. In previous theses, simple

descriptive statistical methods, as well as additive regression models, classification trees,

neural networks, Bayesian networks, and more proved to be useful techniques to analyze

large data sets. The exemplary analysis will use some of these statistical techniques to

study the influence of the agents’ personality factors on the outcome of simulation runs.

Analysis and critique of the statistical results and a comparison to real-world

experience are the final steps taken to—hopefully—add new insight to the nature of

peacekeeping missions.

D. ORGANIZATION OF STUDY

The flow of the remainder of this document is as follows. Chapter II explains the

design of the simulation model and describes the scenario. Chapter III details the

exemplary analysis. It ranges from a description of the experimental design to a portrayal

of various statistical techniques. The final chapter, Chapter IV, provides conclusions and

recommendations for future work. Appendix A provides a German to English reference.

The simulation output is listed in Appendix B and Appendix C provides information on

how the reader can obtain the source code of the simulation model.

14

THIS PAGE INTENTIONALLY LEFT BLANK

15

II. MODEL DESIGN AND FEATURES

A. OVERVIEW

The bulk of this thesis project presents a simulation that is useful to model

peacekeeping scenarios. As in other combat models, a major challenge is to adequately

represent the decision-making process of military personnel. However, in MOOTW, the

scale of actions and reactions is wider. In addition to military individuals, groups, and

units, the model must also be able to capture civilians. Civilians may be armed, but need

not be. At times, the civilian side will start out unarmed, but suddenly may use stones or

Molotov cocktails.

The range of possible scenarios is too wide to be captured in one simulation

model. For this reason, we will design our model in a way that makes further upgrades

possible and easy. The first step captured by this work will allow the user to model a

scenario where a group of peacekeepers tries to keep a larger group of demonstrators

from reaching a certain area that requires the demonstrators to pass them. The model

should allow for an escalation of the situation, e.g., peacekeepers firing in the air or

shooting demonstrators and demonstrators using their “weapons.” A specific description

of the scenario that is used in an exemplary analysis is given in Chapter III.

As briefly discussed in Chapter I and previously shown in earlier work,

e.g., Erlenbruch’s (2002) master’s thesis, peacekeeping scenarios can be viewed as

complex adaptive systems. Thus, a MAS seems to be a good approach to capture the

individual decision-making process and study the outcome of the whole system.

Java is an object oriented programming language and is the computer coding

language used in this thesis. The integrated development environment (IDE) used to

develop the model, Forte for Java Community Edition, was provided by

Sun Microsystems. The simulation model is built using an Application Programming

Interface (API) designed by Professor Arnold Buss at the NPS for event-driven

simulations called Simkit. For this thesis, Simkit version 1.2.7b (which is a

2003 version) is used. In particular, the simulation presented in this thesis takes

advantage of Simkit’s mover, sensor, and random number management. For the input

16

data, i.e., the general setup of a scenario, the eXtensible Markup Language (XML) is

used to save load and process the data. JDOM12 is the API used to operate XML data in

Java. During the development phase and, in particular, for debugging and validation

purposes, the Actions13 API provided a set of very useful animation features.

The model is designed to be used by analysts. This chapter provides a description

of the model’s design and an explanation of the basic ideas that underlie the program

code. However, this chapter does not provide a full range of instructions for the use of

the program. In order to operate the model, change the basic setup of scenarios,

introduce new features, or even upgrade the simulation as a whole, the reader is required

to conduct a detailed reading and study of the source code. Because of the upgradeable

design, any Java programmer should be able to make further enhancements without

changing the basic design of the model. The model is free for all to use. Further

information, downloads, and up to date information may be found in Appendix C.

B. GENERAL DESIGN PARADIGMS

This section discusses the model’s underlying design paradigms. Alternatives are

briefly explained and design choices justified. Since a combination of discrete event

simulation (DES) and MAS is still in its early stages, the section starts with a discussion

on the pros and cons of DES versus time step simulation (TSS). The next paragraph

explains the model-view-controller paradigm (MVCP). A discussion on MOEs is

followed by explanations on the upgradeable architecture of the model. An introduction

to the management of random numbers when using Simkit concludes this section.

Finally, some hints on notation: Whenever simulation entities are mentioned,

e.g., interfaces, classes or objects, they are displayed in italics. Classes contain methods.

Throughout the text, methods are denoted in Java code notation. For example, there is a

method doAssessment(Agent agent). Its name is “doAssessment” and it takes one input

parameter of type Agent, which has the variable name agent. Variable names are

12 JDOM is not an acronym. It is, quite simply, a Java representation of an XML document. JDOM
provides a way to represent a document for easy and efficient reading, manipulation, and writing.

13 Animation package developed for Simkit based simulations.

17

referenced according to their notation in the Java code. For example, sensedEnemies is a

variable of type ArrayList in the BasicPerceprtions class. Variable names are not

displayed in italics.

1. Time Step Simulation versus Discrete Event Simulation (DES)

All simulations have in common that state variables change over the course of a

simulation run. For example, a simple multiple server queue model may use Q (the

number of customers in a queue) and S (the number of available servers) as state

variables. Obviously, both variables change during the course of a simulation run as new

customers arrive or customers that received service leave. The question is: “What is the

driving force that causes these changes?” There are two philosophies that exist in the

simulation world. In TSS, discrete time steps may or may not reveal changes of the state

variables. Usually, a time step has a constant value and all time steps are equal. At a

time step, the model decides which, if any, state variables change. In a DES, the change

of state variables is caused by events.

Regarding the simulation clock, Peter Lorenz from the University of Magdeburg

explains the difference between TSS and DES as follows:

If the simulation clock increases by the same value with every step this is
called a time step simulation. It considers equidistant moments and
calculates changes of model data only at these moments. If the simulation
clock is set forward from event to event we speak of Discrete Event
Simulation. An event is the ‘sudden’ change of the value of at least one
model variable. Event and change of states are synonymous in this
context. [Peter Lorenz, 2006]

In the area of military applications, TSSs have become widely popular. The

underlying philosophy facilitates animation. Military simulations very often model

movement processes. For example, a combat scenario can be simulated with a

representation of military units moving in a two-dimensional environment. It would be

very easy for a computer program to compute the location for any individual moving unit

in incremental time steps if their laws of movement are known. Peter Lorenz comments:

Time step simulation is a widespread construction method for simulation
programs. The idea is to divide the simulated time into intervals of the
same length and to recalculate all model variables at the end of each of

18

these intervals. The time step simulation is a very obvious simulation
method. Many ‘naïve’ programmers, who were not into the matter, have
been intuitively using it. An algorithm that checks model variables in
intervals for necessary changes is relatively easy to design and implement.
[Peter Lorenz, 2006]

ABSs such as ISAAC14 and MANA,15 in addition to their time-step approach,

take advantage of a checker-board structure for the two-dimensional mover’s space.

Similar to a pawn in the game of chess, in each time step, one particular mover is allowed

to move one square forward, whereas another one could follow the pattern of a knight

and move two squares horizontally and one vertically—depending on the mover’s speed

and destination. Even for a great number of entities, this structure is fortunate for a

computer animation. As the simulation clock clicks, the location of any mover is

computed and displayed on the screen. Lloyd Brown (2000), using ISAAC for his

Master’s Thesis on the use of an ABS for human decision-making, explains the model’s

general design as follows:

The battlefield in ISAAC is represented on a two-dimensional lattice of
discrete sites. Each site of the lattice may be occupied by one of two kinds
of agents: red or blue. The initial state consists of either user-specified
formations of red and blue agents or a random distribution of red or blue
agents. Red and blue flags that represent goals have a user-specified
position. A typical goal for both red and blue agents is to successfully
reach the flag positioned in the diagonally opposite corner.
[Ilachinsky, 1997]

As briefly explained, a time step simulation may have a relatively simple program

structure and facilitates animation. As a downside, TSS may be inaccurate for not being

capable of representing events that occur within a time interval. This disadvantage can

possibly be remedied by minimizing the length of the time steps. Then, however, the

simulation may use computing power inefficiently since all state variables are

recomputed over and over again even though most will not have changed.

Discrete-event simulation concerns the modeling of a system as it evolves over

time by a representation in which the state variables change instantaneously at separate

14 Irreducible Semi-Autonomous Adaptive Combat.

15 Map Aware Non-uniform Automata.

19

points in time. These points in time are the ones at which an event occurs. An event is

defined as an instantaneous occurrence that may change the state of a system. Although

DES could conceptually be done by hand calculations, the amount of data that must be

stored and manipulated for most real-world systems dictates that DES be done on a

digital computer. [Law and Kelton, 2000]

Again, we listen to Lorenz from the University of Magdeburg as he lectures on

this simulation approach:

Discrete event simulation is a construction method for simulation
programs. The simulated time runs through a sequence of moments when
discrete events occur. The method is considered to be more efficient, but
on the other hand more difficult to handle than time step simulation. It has
been given preference in most modern discrete simulation programs. The
discrete event simulation divides the process to be emulated into a
sequence of events. An event is a change of a process state that is
modeled by a sudden change of a model variable. Events are organized in
a list that contains the time of each event in ascending order. In this way
sub-processes that run parallel are represented with a sequential structure.
There maybe any long interval between two events. The selected time
unit can be freely chosen and is without influence on the number
of calculations.

Difficulties are caused by events that occur at the same time. In large
models it is an essential task, to handle events that result from another
event correctly. Simulation systems support the user in solving
this problem.

Discrete simulation systems today predominantly use the principle of the
discrete event simulation. It is more universal than time step simulation.
In fact time step simulation can be regarded as a special case of discrete
event simulation. [Peter Lorenz, 2006]

Coming back to our multiple server queuing example, the definitions given above

should have made clear that, as opposed to only during a time step, an event, say the

arrival of a new customer, changes the state variable, in our example Q (the number of

customers in a queue), right at the time when the customer arrives. The state variable S

(the number of available servers) is also changed in that very moment when a server ends

his service to a customer. In case there are further customers waiting in line, the

end-service event may cause a start-service event without any delay. As a build-up on

20

DES, event graphs are a powerful tool to visualize the model. Professor Buss, in his

paper “Modeling with Event Graphs,” summarizes:

Event Graphs are a way of graphically representing discrete-event
simulation models. Also known as ‘Simulation Graphs,’ they have a
minimalist design, with a single type of node and two types of edges with
up to three options. Despite this simplicity, Event Graphs are extremely
powerful. The Event Graph is the only graphical paradigm that directly
models the event list logic. There are no limitations to the ability of Event
Graphs to create a simulation model for any circumstance. Their
simplicity, together with their extensibility, makes them an ideal tool for
rapid construction and prototyping of simulation models. In this paper we
will demonstrate the ability of Event Graphs to leverage simple models
into more complex ones with very few additional features. [Buss, 1996]

For a military analyst, it is self-explanatory that a simulation ought to be able to

represent an event just in the split-second when it occurs. Furthermore, movers should be

able to use any point in a two-dimensional arena. Previous work has proven that it is

possible to combine the ideas of ABM with DES. Erlenbruch justifies his choice for an

agent-based, discrete event model as follows:

Discrete event simulation concerns the modeling of a system as it evolves
over time by a representation in which the state variables change
instantaneously at separate points in time. These points in time are the
ones at which an event occurs, where an event is defined as an
instantaneous occurrence that may change the state of the system. A
time-step simulation, on the other hand, updates all states simultaneously
at each processed time step and processes resulting events in a random
manner. [Law and Kelton, 2000]

The author chose DES because a pure DES worldview provides more flexibility

and modeling power than a pure process-oriented worldview. [Buss, 2001] In an

evaluative model, as the one provided in this thesis, it is also important that the state

variables change instantaneously, and not at some time step that is chosen for

programming purposes. The model must evaluate who acts first and how other entities

react to the action. These issues cannot be observed when all state variables are updated

simultaneously at a given point in time and the order of action is generated at random.

21

Figure 2. Event graph of a multiple server queue [Buss and Sanchez, 2002]

Figure 2 shows an example of the arrival process represented by the event

“arrive.” A certain service by one out of a certain number of servers consists of

two events: “begin service” and “end service.” An arrival event increments the number

of customers in the queue, whereas the begin service event decrements it by one. The

state variable S (number of available servers) is incremented/decremented by the begin

service and the end service events.

Like Erlenbruch beforehand, we will use an ABM in a DES. Peacekeepers and

demonstrators will be represented as movers in a continuous two-dimensional (2-D)

simulation space. A typical event that occurs is the detection of a demonstrator by a

peacekeeper. This event changes one of his state variables: it adds the demonstrator to

the list of sensed demonstrators which is a part of the inner environment of the

peacekeeper. Based on the situational goal of the peacekeeper and his personality this

change in his inner environment may cause action, e.g., firing in the air.

2. Model-View-Controller Paradigm (MVCP)

The MVCP is a software architecture that has a key feature useful for simulation

analysts. This architecture allows the user to uncouple the user interface from the model

and thus run the model efficiently. A brief and useful definition of this paradigm is given

on Apple Computer’s Website:

A common and useful paradigm for object-oriented applications,
particularly business applications, is Model-View-Controller (MVC).
Derived from Smalltalk-80, MVC proposes three types of objects in an

22

application, separated by abstract boundaries and communicating with
each other across those boundaries.

Model objects represent special knowledge and expertise, such as a
company’s data and business logic. Model objects are not directly
displayed. They often are reusable, distributed, persistent, and portable to
a variety of platforms.

View objects represent things visible in the user interface such as
windows, table views, and buttons. A View object is ‘ignorant’ of the data
it displays, as it relies exclusively on the Controller object for data. View
objects tend to be very reusable and so provide consistency
between applications.

The Controller object acts as a mediator between Model objects and
View objects. Usually there is one Controller per application or per
window. Controller objects communicate data back and forth between the
Model objects and the View objects. A Controller’s function is usually
very specific to an application, so it is generally not reusable like View
and Model objects are.

Because of the Controller’s central mediating role, Model objects need not
know about the state and events of the user interface, and View objects
need not know about the programmatic interfaces of Model objects.

Within the MVC paradigm, enterprise objects are Model objects. By
definition, Model objects represent data and business logic. The Enterprise
Object technology extends the MVC paradigm so enterprise objects are
independent of their persistent storage mechanism. Enterprise objects do
not need to know about the database that holds their data, and the database
doesn’t need to know about the enterprise object formed from its data.
[http://developer.apple.com/documentation/webobjects/DesktopApplicatio
ns/ BasicConcepts/chapter_3_section_12.html, March 2006]

From this definition, there are many advantages of this software architecture.

First, when programming such complex software, any programmer will be happy to

check the effects of software changes with a GUI. Moreover, a GUI is a desirable

debugging tool. The GUI for our model is provided in the Actions API that was

developed by Professor Buss, NPS, for Simkit applications. As shown in Figure 13, in

Chapter III, agents are displayed as little squares in different colors. Blue agents

represent peacekeepers, whereas red agents are demonstrators. The leaders on both sides

are indicated by their diamond shape.

23

The controller is also in the actions API. As shown above, the purpose of the

controller is to couple the model with the GUI. In order to get an animation that allows

the user to actually see agents move a time-step approach is applied. The controller of

the actions API keeps track of all Simkit movers in the model. Therefore, our agents

extend Simkit movers. In discrete time-steps, so-called “pings,” the controller asks the

movers their location, which is an x, y-coordinate in a 2-D simulation space. The

location is then given to the “sandbox,” which is a representation of the simulation space.

On the referring x-, y-coordinate of the sandbox, the referring symbol for the agent is

displayed. On any “ping” the location of any agent is updated. By choosing the

time-step between two pings small enough, the user will have the impression of

continuously moving agents on the GUI.

A model for analysts needs to be data-farmable, meaning it is necessary to do

multiple runs with changing parameters. With respect to this requirement, it is necessary

for the user to be able to run the model without animation in order to efficiently use

computing power. An MVCP architecture allows the user to simply “switch-off” the

animation. The model’s output, consisting of one or more MOEs, is written to a file as

the model iterates one run (or computational experiment) after another.

3. Measures of Effectiveness (MOEs)

A Measure of Effectiveness (MOE) is a quantitative measure that allows insight

in the progress and/or success of a process. There are various MOEs in the military

world, e.g., force ratio, enemy force attrition, the speed of movements, shot-down ratios,

or number of sunk enemy ships.

During Operation Desert Storm the attrition of SCUDs, tanks and artillery
were measured to assess progress in eliminating the enemy’s warfighting
capabilities. A familiar, and controversial, measure was the body bag
count in Vietnam. This experience provides a caution regarding the care
that must be taken in developing, choosing, and applying such measures.
[John J. Nelson et al., 1996]

Good MOEs are a link between cause (action of own forces) and effect (damage

to enemy forces). They tell commanders and decision makers how well they are doing

24

before the war is over. In this respect, MOEs have some forecasting function, yet they

are not always capable of making a reliable contribution to this function.

When it comes to combat modeling, MOEs are used to compare different factor

settings. For example, given a certain combat scenario two different tactics are often

evaluated by comparing one or more MOEs. For obvious reasons, force attrition used to

be a commonly used MOE in combat modeling. In 1914, F.W. Lanchester modeled

warfare using a set of differential equations. Their most basic form is based on the

assumption that one side’s attrition rate is proportional to the other side’s number of

forces.

Although the simple Lanchester equations with constant coefficients
remain useful for demonstrating some features of combat (e.g., the value
of concentrating effort and the associated penalty for breaking up one's
forces), especially when it is desirable to do so analytically, they are a
poor basis for describing most combat situations. Computer simulations
may use Lanchester expressions ‘locally’ (i.e., for attrition estimates
within a given time interval), but the coefficients of those equations
change from time step to time step as conditions of terrain, defender
preparations, and many other factors change. Good computer simulations
recognize that the losing side may choose to break off battle rather than
be annihilated.

[http://www.rand.org/pubs/monograph_reports/MR638/app.html, March
2006]

At the dawn of the computer simulation age, criticism of Lanchester equations

became louder, although they are still in use for modeling force-on-force scenarios. For

their lack of, especially, the “human factor of combat,” Dr. Ilachinsky from the Center for

Naval Analyses (CNA) claimed that combat scenarios are CAS and thus can be better

modeled as ABS.

From a fundamental standpoint, however, there are many limitations to
using LEs to represent modern combat. Two of the biggest limitations are
(1) they do not account for any spatial variation of forces (i.e., no link is
established, for example, between movement and attrition) and (2) they
completely disregard the human factor in combat (i.e., the psychological
and/or decision-making capability of the human combatant). Therefore,
LE-derived models of land warfare are inadequate for assessing advanced
warfighting concepts, such as those being explored by the Marine Corps.
In particular, the Lanchesterian view of combat does not adequately

25

represent the Marine Corps’ vision of combat: small, highly trained,
well-armed autonomous teams working in concert, continually adapting to
changing conditions and environments. As an alternative, we suggest that
recent developments in complex systems theory—particularly the set of
multi agent-based simulation tools developed in the artificial life
community—provide a new set of tools for addressing land warfare in a
fundamentally different way. [Ilachinsky, 1997]

Today, Ilachinsky’s ISAAC and other ABSs are widely used by military analysts.

ISAAC’s visual mode of operation allows an observation of how the battle evolves over

time. In addition to this, ISAAC was designed to also be capable of generating

quantitative output—i.e., numbers that should tell something about the mission’s success.

To this end, ISAAC provides a capability to (1) generate time series of
various changing quantities describing the step-by-step evolution of a
battle, and (2) keep track of certain measures of ‘how well’ mission
objectives are met at a battle’s conclusion. The former (using built-in
statistics measures; see below) yields quantitative snapshots of a battle as
it unfolds in time; the latter (using a simple parameter-space mapping
technique; see below) yields semi-quantitative measures of ‘success’ at a
mission's end. [Ilachinsky, 1997]

The MOEs Ilachinsky chose fall into seven classes: force sizes; interpoint

distance distributions; neighbor-number distributions; enemy-flag interpoint distance

distributions; cluster-size distributions; center-of-mass positions; and spatial entropy.

Like traditional models ISAAC still uses force ratios, but, in addition to that, this ABS

allows insight into many more, particularly location-oriented, MOEs.

Because of the very nature of peacekeeping missions, force ratios, as well as other

attrition-based MOEs, are not adequate. As Erlenbruch already pointed out, a killed

peacekeeper may demoralize his whole unit and/or demolish the support of their mother

country, whereas a dead demonstrator may cause an overall operation failure. Therefore,

MOEs for peacekeeping models need to be chosen carefully. In any case, they should be

scenario-based. A certain measure that quantifies mission success in one scenario may be

completely useless for a different scenario. Erlenbruch used a weighted sum of utility

functions. His final MOE was determined by the number of killed and wounded

peacekeepers and the number of killed and wounded protestors multiplied by a number

that represented how the protestors could advance towards their objective. Like most

26

combat models, Erlenbruch uses attrition-based measures camouflaged in utility

functions in order to generate an overall MOE whose value does not tell the user

something intuitively.

The model developed in this thesis is designed to study the influences of human

personalities on the arousal of violent behavior in PKOs. Similar to Erlenbruch’s work, a

group of demonstrators wants to reach a certain location. A smaller group of

peacekeepers tries to keep them from getting there by blocking their way. The MOEs

should permit an analysis on the question of how different personality factors (explained

in detail in Section III.C) have an influence on violent behavior. Therefore, we do not

want to conduct a “body bag count.” Furthermore, we also don’t want the MOE to be

determined by the number of demonstrators who pass the peacekeepers. Thus, we will

simply measure the time from the first detection of a demonstrator by a peacekeeper, or

vice versa, until the first shot is fired. We will also measure the time until the first agent

is wounded and the time until the first agent is killed.

Time is a favorable MOE for various reasons. First of all, time can be measured

in continuous numbers. This allows for more flexible analysis than discrete numbers do.

Time is a common MOE for everyday situations, e.g., sports. Therefore, it is intuitive

and easy to explain. Time allows reasonable conclusions for the research questions. If it

takes a long time until the first shot the violence potential in the scenario is considered to

be low. If the first shot is fired a short time after the first agent was detected, the

potential for violence is high.

Using time as our MOE also allows analysis on the question of which one of the

agents’ personality factors has the greatest effect on a potentially violent escalation of the

situation. Simple statistical tests, as well as more sophisticated data analysis models, can

be applied.

At this point, the reader may ask: “This is a model for peacekeeping operations.

What if there occurs no shot at all? What is the MOE then?” The answer to these

questions will be found in Section III.B.

27

4. Upgradeability

Object oriented programming languages have proven to facilitate programming an

ABS. This family of programming languages mirrors complex adaptive systems in the

programming world. Building up from primitive type variables, objects may grow up to

very complex constructs and end up as software agents. There are three key features that

make an object oriented programming language: encapsulation,16 inheritance,17 and

polymorphism.18 The first two of these are very important and have to be carefully

considered when building an ABS.

Information encapsulation is a standard feature in almost any object oriented

program, yet essential for an ABS. Care must be taken: there must be neither any

inadvertent information flow nor any outside control of the agents. Software agents are

supposed to gain information only through the sensing mechanism or communication.

This information is gathered in the class BasicPerceptions, which is one major part of

their InnerEnvironment. The InnerEnvironment and the agent’s Goals determine the

agent’s actions. Therefore, it would be very unrealistic if an agent would know anything

about another agent, except what he sensed or was told.

Inheritance in an object oriented language allows a specific organization of

classes. In a tree-like structure, an object can take on any feature of another object and

add additional features to it. Therefore, a programmer is able to take advantage of the

work others have done before him. In this model, the agent that eventually is instantiated

is a BasicAgent. A BasicAgent extends the UniformLinearMover from the Simkit

package. This means the BasicAgent is a UniformLinearMover in the sense that he can

do anything that is inscribed in the super class and uses all of its variables. Additionally,

the BasicAgent has additional variables and features. With the basic idea of inheritance

16 Encapsulation is the process of hiding all the details of how a piece of software was written and
telling only what is necessary to understanding how the software is used. Put another way, encapsulation is
the process of describing a class or object by giving only enough information to allow a programmer to use
the class or object. [Savitch, 2001]

17 In a programming language, such as Java, inheritance is a way of organizing classes so that classes
with properties in common can be grouped so that their common properties need only be defined once for
all the classes. [Savitch, 2001]

18 In a programming language, such as Java, polymorphism means that one method name, used as an
instruction, can cause different actions depending on what kind of object performs the action.

28

in mind, one can say that any simulation model written in an object oriented language is

upgradeable. If one just wants to add capabilities to objects this statement is true.

However, one could want to create completely new objects and add them to the

framework of the rest of the simulation. Therefore, more sophisticated considerations

were made on the software architecture for the model developed in this thesis.

A feature of Java that is even more powerful than inheritance and makes this

model upgradeable is the use of interfaces. An interface is a class containing a list of

methods that may be implemented by another class. By adding interfaces into a Java

program the programmer can build up a framework of “empty classes.” Implementations

of these empty classes have to contain all the methods listed in the interface and are

plugged into the frame the interface created. Additional methods are welcome, but the

methods listed in the interface must exist in any implementation of the interface. Now,

for a later upgrade it is easily possible to just program another implementation of that

interface and use it instead of the first implementation. It will also fit into the plug-in if

the class meets the requirement that all methods listed in the interface need to be

implemented. For example, in this model there is an interface called Agent. It contains a

list of getter methods that are useful to be able to access the information that is

encapsulated. Furthermore, it has methods like doDetection(), doUndetection(),

doWounded(), or doKilled() which are potentially necessary actions in a peacekeeping

scenario. Now, the implementation of the Agent interface is the BasicAgent class. The

BasicAgent needs to carry implementations of any method listed in the Agent interface.

If an analyst wants to use a different type of an agent, it would just mean that he would

have to program another class, say EnhancedAgent.19 This class must implement the

Agent interface, e.g., contain any of the interface’s methods. Immediately, a scenario

with instantiations of the EnhancedAgent class may be created without having to change

any of the other classes of the simulation. Like BasicAgent being an implementation of

an interface, any class starting with “Basic,” e.g., BasicGoalManager,

BasicInnerEnvironment, etc., are implementations of Java interfaces. Therefore,

extensive use of these in this simulation results in a framework that is easily capable of

19 Potential name for a class representing an upgrade to a BasicAgent.

29

incorporating more sophisticated elements. A detailed description on the simulation

program is provided in Sections II.C and II.D.

In many simulation programs, one will find entities that do not originally belong

to the simulation model itself. There is no aspect in the real world these entities belong

to; they do not represent any scenario aspects. Most of the time, these entities find their

way into a model through programming requirements. Sometimes these entities are

closely coupled to, if not fully integrated with, the simulation entities. It may be possible

that there is an influence through these entities. Therefore, care must be taken that none

of these simulation entities are active during simulation runs. One way of taking care of

this is the use of tools that help to instantiate classes and then remain passively outside

the scenario. These tools are called “factories”, “mediators”, or “adjudicators.”

In our model we use two types of factories: A WeaponFactory and an

AgentFactory. The name Factory is a self-explaining term for what these Java classes are

good for: The WeaponFactory simply is an outside constructor tool that instantiates the

different type of weapons used in the simulation. It returns distinct weapon objects. Of

course, Weapon is a Java interface whose implementations are different types of

weapons. Now, the weapon among other objects is turned over to the AgentFactory. In

the same way, the AgentFactory “puts together” an Agent object and returns it to the

scenario. The constructor methods of these Factories are static methods. Therefore, it is

not necessary to keep any factory objects in a scenario. However, it is possible at any

point in time throughout a simulation run to order a new Agent from the AgentFactory.

That is, a future scenario could include a second group of demonstrators appearing from a

different location as well as a peacekeeping leader who would call for reinforcement.

The AgentCookieCutterMediator is a class that manages Detection and

Undetection events for all agents during a simulation run. Whenever it comes to firings,

the AgentAdjudicator class is responsible for the evaluation of the effects, i.e., whether

agents get wounded or killed. Both classes in their current versions are easily upgraded,

extended, or, if necessary, replaced by a more sophisticated mediator.

Another feature that is provided by the Simkit package is the principle of loosely

coupled components. This principle takes advantage of so-called “listener patterns” and

30

makes the entities of a simulation interoperable without explicitly coupling them.

Professor Buss explains that in a Simkit model any event is implemented as a

user-defined “do” method, e.g., doFiringAt(). A “do” method is simply a method starting

with the string “do.” Scheduling edges are executed using a method called

“waitDelay().” [Buss, 2001] The rest is carried out by the Simkit API using a future

event list. Any entity that implements the SimEntity interface can now take advantage of

the loosely coupled component principle.

The mechanism by which two simulation components are linked is the
SimEventListener interface, that defines a callback method. An instance
of a SimEventListener registers interest in hearing a SimEntity’s
simulation events with the addSimEnventListener(SimEventListener)
method. Whenever a SimEvent occurs for the SimEntity instance,
notification is dispatched to all registered SimEventListeners via the
callback method processSimEvent(SimEvent).

The behavior of a SimEventListener as implemented in the
processSimEvent(SimEvent) method can be completely customized to suit
the simulation modeller’s needs. Most of the time, the modeller will be
content with the default behaviour as implemented in the (abstract)
SimEntityBase class. That behviour is that whenever a SimEvent is heard,
the object attempts to find a matching ‘do’ method. If one is found, then it
is invoked. If none is found, then nothing happens.

The SimEventListener Pattern is useful in implementing component-based
simulation models. [Buss, 2001]

To summarize this aspect of upgradeability, any entity in the simulation is able to

interact with other entities without a firm link (reference variable). This principle makes

a further upgrade easy to realize. Enhanced entities or those that come in during a

simulation run just need to be registered SimEventListener instances. Furthermore, the

loosely coupled components principle, as opposed to reference variables, limits agents’

access to other agents’ variables and methods.

5. Random Number Management

The author of a simulation model that widely uses random numbers for various

purposes must ensure that the random numbers are really random. Even if different

random numbers from different distributions are required, it is often desirable to pull

them all from the same random number stream at first and then transform them into

31

whatever distribution they belong to. Furthermore, when multiple simulation runs of a

specified scenario are carried out it is also highly desirable to use random numbers from a

single random number stream for all runs. This means another random number generator

must not be instantiated when a new simulation run starts. In order to replicate findings,

it must be possible to set a seed. A stored seed ensures the ability to begin a string of

numbers from the same starting point in the stream. Again, it is Simkit that provides a

sufficient means to establish proper random number management.

Simkit’s design permits much flexibility for generating random variates
used in the simulation models. The underlying design goal was to enable
the modeller to change any random variate in a model to any desired
probability distribution without having to recompile the model. This was
to extend to classes generating random variates implemented after the
compilation of the original model.

Simkit uses a combination of a RandomVariate interface and an abstract
factory that is called to produce instances of the desired implementation
using only ‘generic’ data—that is Strings, Objects, and numbers.
[Buss, 2001]

In this simulation various random variates are used. The reaction time of an agent

is a uniform variate between 0.1 and 1.0 time units. In certain cases an agent picks a

target randomly from a discrete uniform variate. When a scenario is built, agents are

distributed randomly around a base (flag). The coordinates are a combination of the

base’s coordinates plus an error drawn from a normal random variate with a mean of 0.0

and a standard deviation of 20.0. The hit/no-hit and the kill/no-kill decisions are also

based on a uniform random variate within the abstract AgentAdjudicator class.

The Simkit random package (Simkit version 1.2.7b) offers more random number

management options than is necessary to meet the needs of this simulation. In the frame

of the RandomNumber interface there are a variety of random number generators that can

be instantiated. Changes can even be made on the fly. In order to instantiate them

without any undesirable effects on a simulation, the abstract RandomNumberFactory

class is used. The default instance that is returned is a Congruential object which is a

Linear Congruential Generator that is sufficient for the purposes of this model. Using the

getInstance() method the programmer may input a CongruatialSeed[] as a parameter in

32

order to force the RandomNumber instance to always start at the same spot in the random

number stream.

More important than the choice of a distinct generator is the fact that the

programmer can use this one and only random number generator as an input parameter to

any of the instances of the RandomVariate interface. RandomVariate instances are

random number generators for random variates from probability distributions. There are

different techniques to cast a U(0, 1) to a random number from a certain probability

distribution, say a N(0, 20), such as the inverse transform method, the composition

technique, the convolution technique or the acceptance-rejection method. Law and

Kelton’s book (Simulation Modeling and Analysis) provides a good overview on

generating random variates. Only one Congruential object exists in the entire simulation

model. This one serves as a nucleus for all random variates; thus, the modeler has

eliminated the undesirable effects that can occur from the correlation of random numbers.

Furthermore, the Simkit random package is highly flexible and allows further

upgrades of the random number organization in many ways. Again, the RandomNumber

and the RandomVariate interfaces allow changes even within a simulation run.

Furthermore, getter and setter methods20 make the change of parameters as well as seeds

possible at any point in time. With the use of the Simkit random package, there are no

limitations for further upgrades concerning the random number management in

the model.

C. AGENT DESIGN

This section explains the design of the software agents in detail. Starting from a

general overview on the agent’s variables and features, we will discuss the main software

components that make an agent. The purpose is to explain the functions of the model’s

main entities rather than discussing the algorithms. A more detailed understanding is

20 The terms getter and setter methods are often used synonymously for accessor and mutator

methods. A public method that reads and returns data from one or more private instance variables is called
an accessor method. The names of accessor methods typically begin with “get.” A public method that
changes the data stored in one or more private instance variables is called a mutator method. The names of
mutator methods typically begin with “set.”

33

possible by a look at the source code that is provided in Appendix B. This chapter is

meant to explain to the reader what an agent does, how it does it, and why it does it.

1. Agent Variables and Features

As was explained previously, Agent is an interface that provides a frame for

various implementations. The implementation provided in the model is realized in the

BasicAgent class.

The BasicAgent is inherited from the Simkit UniformLinearMover class. It is

designed in a building block construct. It consists of an InnerEnvironment, which is also

designed as an interface. The implementation of the InnerEnvironment in this model is

the BasicInnerEnvironment. The building blocks that make the BasicInnerEnvironment

are three interfaces: Properties, Perceptions and History. Properties and Perceptions are

implemented in BasicProperties and BasicPerceptions, whereas an implementation of

History is left for further upgrades.

Implementations of the Agent interface also consist of a goal apparatus. The

management of the goals of a BasicAgent object is done by the GoalManager, which is a

Java interface implementing a BasicGoalManager. The BasicGoalManager holds and

manages the five goals a BasicAgent possesses. All of these goals are implementations of

the Goal interface.

Furthermore, BasicAgent has a Weapon variable. Weapon also is a java interface.

There are seven different implementations of the Weapon interfaces starting from

WeaponMG3 (representing a 7.62 machine gun) to WeaponStone (representing a stone,

which can be used as a weapon by some demonstrators).

Given this building block construct, it is possible for a programmer to easily

enhance the BasicAgent without making a lot of changes to the BasicAgent class. As an

example, one could simply add one or more goals. Of course, the programmer would

have to write the classes for the additional goals. Then, he could write an

EnhancedGoalManager21 (which could be an inheritance from the BasicGoalManager).

Unfortunately, the GoalManger is instantiated in the BasicAgent’s constructor. So, the

21 Possible name for a GoalManager in an upgraded model.

34

last change one has to make would be to instantiate the EnhancedGoalManger instead of

the BasicGoalManger.

Perceptions

 Properties

 History

InnerEnvironment

GoalManager

Goal 1 Goal 2

Goal 4 Goal 5

Goal 3

Weapon

Weapon
6

Weapon
7

Weapon
1

Weapon
2

Weapon
1

Weapon
2

Weapon
 3

A g e n t

Figure 3. Building block structure of the Agent interface’s implementations

Figure 3 depicts the building block structure of the possible implementations of

the Agent interface. Any of the ovals could be any implementation of an interface. Thus,

any of them may be taken out of the structure and be replaced by a different

implementation without changing the structure. Also, there is space enough to add

additional implementations.

A BasicAgent is characterized by its side (red or blue), its rank (leader or

follower) and its health (healthy, wounded or killed). These three variables, however, are

kept by the class BasicProperties, as are the personality factors. The BasicAgent uses

getter methods to access these variables.

The BasicAgent’s variables that are related to the moving capabilities, like

location and maxSpeed, are kept in the super class which is the Simkit

UniformLinearMover. The BasicAgent does not yet have a PathMoverManager. For a

scenario as simple as ours it is not necessary to use a PathMoverManager. However, if

35

the model should be upgraded with infrastructure (buildings, streets, rivers, bridges, etc.)

it may be necessary to have a PathMoverManager that is able to navigate the Agent

around the obstacles.

A BasicAgent has a single sensor. However, the variable mySensor is of type

Sensor. Sensor again is an interface out of Simkit. Simkit also provides a set of Sensor

implementations. Out of these we picked the CookieCutterSensor and extended it.

Therefore, the BasicAgent uses the AgentSensor as an implementation of the Sensor

interface. Since the Detection and Undetection events cause action on the agent level, the

sensor also has to be kept on the agent level.

The BasicAgent class has a variety of getter and setter methods. With respect to

encapsulation of information, the use of such methods is a highly sensitive matter. Care

must be taken that other agents will never change nor have access to the variables which

are not meant for them to know or change. Since it was not possible to renounce them

completely, these methods had to be reduced to a minimum. In particular, the use of

setter methods is very sensitive. Setter methods allow changing encapsulated

information. However, since some of the information is kept not on the Agent level, but

on the Properties level, and is also subject to change, a small number of setter methods

was inevitable.

The most interesting methods, those that represent the decision-making process as

well as the actions of a peacekeeping soldier (or a demonstrator), are the “do” methods.

As was mentioned before, the “do” methods take advantage of the SimEvent Listener

pattern in order to manage the events. In this manner loosely coupled components can

interact with each other. The rest of this chapter provides a brief explanation on the “do”

methods of the BasicAgent.

In the real world, there are times when persons change their mind and try to

achieve something different than what they wanted to before. Usually, this happens after

an assessment of their situation. In a peacekeeping scenario, a demonstrator may try to

reach a certain area. All of a sudden, he hears a rifle being fired somewhere. He would

assess his situation and may change his mind. He may stop, turn around, and flee. The

36

model initiates all of these change of goals with the doAssessment(Agent agent)22

method. Whenever an agent is about to accomplish one of his goals or is subject to a

situational change the doAssessment(Agent agent) method is invoked. This may happen

when the agent detects a crowd of demonstrators, when he loses eye-contact with his

leader, when a rifle is fired, when an agent gets wounded or killed, etc. The

doAssessment(Agent agent) method, with the help of the nextAction() method, causes the

agent to stop. Then, all scheduled events of this agent are deleted from the event list.

Then, an algorithm determines his next action based on his situational awareness, his

properties (personality factors), and his currently most important goal. The next event for

this agent is then scheduled on the event list.

The method doDetection(AgentContact contact) is designed to represent a

situational awareness change. For example, all of a sudden, a peacekeeper may see one

or more demonstrators approaching him, i.e., at a certain distance they enter his detection

range. The cookie-cutter principle that is underlying the detection process in this model

is a reasonable approximation of reality. This principle is based on the assumption that

within a certain range anyone is recognized. Whenever another agent is within the

sensor’s range the BasicAgent knows it is there. There is no way of approaching an agent

without being detected as soon as entering its sensor range.

In a further upgrade the effect of different sensing mechanisms could be tested.

For example, one could implement a probabilistic sensing mechanism. The closer two

agents get to each other the more likely it is that they detect one another. In a

peacekeeping scenario, the detection of someone may cause an action. Say, all of a

sudden, a young soldier in his first peacekeeping mission finds himself surrounded by a

crowd of yelling demonstrators. That may cause him to try to get back to his unit or to

use his weapon and fire in the air, based on his panic level. Therefore, the

doDetection(AgentContact contact) method invokes an assessment process which is

carried out in the doAssessment(Agent agent) method. The parameter in the

doDetection(AgentContact contact) is an AgentContact object. This class is designed to

hide information. A BasicAgent in his Perception object does not maintain a list of all

22 Java notation for a method: methodName(parameterType parameterName).

37

the agents that were detected, but of the AgentContacts. The AgentContacts listed in the

sensedEnemies or the sensedOwn ArrayLists serve as a filter and provide only that potion

of information that the BasicAgent is supposed to know, e.g., its location, whether it

belongs to the BasicAgent’s side, whether it has a weapon, and whether it is firing. A

more detailed view of the management of sensed agents is given in Section II.C.4.

In the real world, it may be that the distance between a peacekeeper and a

demonstrator gets too far for them to maintain their awareness of each other. Again, the

cookie cutter principle models this with sufficient accuracy in our scenario. If an agent

gets out of the sensor range of another agent they lose awareness of each other. The

doUndetection(AgentContact contact) method carries out this event. Sensed agents are

taken from the sensedEnemies or the sensedOwn ArrayLists in the BasicPerceptions

class. There is but a little memory function. If the broken contact is the leader of his

own forces, this agent will remember the exact location where this contact breaks.

In an escalating real-world peacekeeping scenario, peacekeepers may use their

weapon. For example, they may fire in the air or at demonstrators in self-defense. The

methods doFiringAir() and doFiringAt() cover these cases. This method decreases the

amount of rounds in the weapon. It is very obvious that in a real-world scenario the noise

of a shot will change the situation. Therefore, other agents must be able to hear the one

that fires in the air. This mechanism is carried out by two methods; both of them are

invoked via the SimEvent listener pattern. The doFiringAir() causes a “bang” event. The

doBang() method in the AgentAdjudicator class then is followed by a “hear shooting”

event for other agents that are located within a specified range. The respective

doHearShooting(Agent agent) method belongs to the BasicAgent class. Furthermore, a

shot in the air in the real world will cause a peacekeeper to assess the situation. Did he

reach his goal? Does the crowd draw back from him? Is he in control again?

Consequently, the doFiringAir() causes the doAssessment(Agent agent) method to

be invoked.

The doFiringAt() method covers all the effects of the doFiringAir() method,

however, there is more to it. It represents aimed fire at a person, which results in either a

miss or a hit. If it is a hit, it may result in a kill or a wounded. Before this, a target needs

38

to be picked. It is obvious that aimed fire in a self-defense situation is fired on someone

who is likely to be using a weapon himself, whereas in a panic situation the target may be

picked at random. At first, the method counts the number of sensed enemies; for

example, the length of the sensedEnemies ArrayList in the Perceptions object. It then

checks for “enemies” who are firing and enemies who have a weapon. Then, a target is

picked according to the following priorities: enemies that are firing, enemies that have

weapons, randomly. The method then invokes the doAdjudicate(AgentDuel duel)

method in the AgentAdjudicator class. This method is the kernel of the abstract

AgentAdjudicator class. It has an algorithm that determines whether it was a miss or a hit

and whether the hit causes a kill or a wound. The algorithm takes into consideration the

training level of the agent, the distance, and the type of weapon. Like the doFiringAir()

method, doFiringAt() will result in a doAssessment() in the end.

It is the AgentAdjudicator class that cares for the statistical data. In any

simulation run, the simulation time of the first shot, the first agent wounded, and/or the

first agent killed is measured and written in an output file.

A BasicAgent may get wounded or killed by the aimed fire of other agents. The

injury of an agent is carried out by the doWounded(Agent agent) method. This method

simply changes the state variable health, which is managed by the BasicProperties class.

Moreover, it changes the properties (personality factors) of the agent. For example, a

soldier who gets wounded may be under the influence of shock, he may try to keep closer

to his own group, he may try to avoid further risks, and he probably will not have the

same affinity to action anymore. Such property changes are carried out by the

doWounded(Agent agent) method. Furthermore, the model assumes that a person who

gets wounded for the second time is killed. For an analysis of the durations until the first

shot, the first agent wounded, and the first agent killed this assumption seems reasonable.

However, if the model is used for different purposes this assumption may need to

be reconsidered.

Even in MOOTW, peacekeepers as well as civilians may get killed. The

representation of a kill is carried out by the doKilled(Agent agent) method. This method

deletes all future events of this agent from the event list. It changes the state variable

39

health. Furthermore, a killed agent is taken from the ArrayLists of the sensed agents in

order to make sure that a killed agent is not considered to be a threat anymore. As

previously explained, the statistical data collection is done by the AgentAdjudicator class.

The BasicAgent class also has some methods that are not captured by the

SimEvent listener pattern. Strictly speaking, these methods contain code that is carried

out by the “do” methods. In order to keep the “do” methods small and to make this code

available for various methods and to keep the program in good order it was packed into

independent methods.

The following UML diagram (Figure 4) provides an overview on the primary

variables and methods of the BasicAgent class.

 BasicAgent extends UniformLinearMover
implements Agent

boolean hasWeapon
boolean isFiring
boolean firstDetection
Sensor mySensor
InnerEnvironment myWorld
GoalManager goalManager
Weapon myWeapon
Action myNextAction

public void doRun()
public void reset ()
public void doAssessment(Agent agent)
public void nextAction()
public void doDetection(AgentContact contact)
public void addSensed(AgentContact contact)
public void doUndetection(AgentContact contact)
public void removeBrokenContact (AgentContact contact)
public void doEndMoveFiringAir()
public void doFiringAir()
public void doFiringAt()
public void doHearShooting(Agent agent)
public void doWounded (Agent agent)
public void doKilled (Agent agent)
public String toString()
public String paramString()

Figure 4. UML diagram of the BasicAgent’s variables and methods

40

2. The Inner Environment

Previous work has proven a distinction between an outer and an inner

environment to be a useful principle. [Erlenbruch, 2002] In this context, the outer

environment would be the representation of a real world peacekeeping scenario. The

outer environment includes anything that exists. It is an objective glimpse of the whole

scenario. On the other hand, the inner environment only exists inside an agent. It is the

representation of the agent’s perceptions of the outer environment. For example, when

peacekeepers and demonstrators intermingle it could be the case that a peacekeeping

soldier loses eye-contact with his leader. The leader is still there, but the soldier does not

see him anymore. In the model space this would mean that the leader still is a part of the

outer environment. However, the same leader would no longer be a part of that agent’s

inner environment. Erlenbruch explains the relationship of the outer and inner

environment in his model as follows:

The author uses the idea of detectors, effectors, and the performance
system as a filter from Holland’s agent model. The agent model used in
this thesis, the PKO-Agent, has a detector to perceive the outer
environment and to build a picture of the perceived outer environment to
build an inner environment. This inner environment is the knowledge of
the outer environment the agent has. All agent decisions are based on the
inner environment. The PKO-Agent also has effectors, to react to the
outer environment. It furthermore has a performance system that filters
the ‘fittest’ reaction out of a set of possible reactions, depending on the
inner environment. [Erlenbruch, 2002]

In general, the outer environment is perceived through one or more detectors.

Inside the agent, the changes of the inner environment may cause actions of the agent.

The links from the agent to the outer environment (of which it is a part of) are the agent’s

detectors and effectors. Of course, an agent would not act based only on his inner

environment. Between the inner environment and the agent’s effectors there is a more or

less sophisticated decision-making apparatus. For the moment, we call it the

performance system. Its functions will be explained later in this chapter. It is important

to keep in mind that the information within the inner environment causes the performance

system to make a decision on if and how to react. An agent that takes on any action is a

change in the outer environment. This change of the outer environment (which is always

41

the same for all agents) may be sensed by some other agents, thus causing a change of

their inner environment. This may cause actions to be taken by these agents. This, in

turn, may cause changes in the outer environment. Referring to Holland’s agent model,

Erlenbruch depicts this loop in Figure 5.

 PKO-Agent

Effectors

Detectors Inner
Environment

Outer
Environment

Performance
System

Figure 5. PKO-Agent model depending on Holland’s reactive agent [Erlenbruch, 2002]

In our model, the inner environment is more than just a subset of the outer

environment. As shown in Figure 3, InnerEnvironment is a Java interface. The

implementation of this interface is the class BasicInnerEnvironment. Its three main

variables are of type Perceptions, Properties, and History. In addition to these,

BasicInnerEnvironment also holds two variables of type Point2D, the objective and the

base. In order to keep the architecture of the model in good order this class serves as a

layer between the agent level and the subordinate classes.

Agent Layer

InnerEnvironment Layer

Properties, Perceptions and History Layer

Figure 6. Layer model of the BasicAgent

42

Figure 6 is a depiction of the different layers of information in a BasicAgent. On

each layer information is kept and processed. The links to the outer environment,

detectors and effectors, are located on the agent layer. So are the various components of

the performance system. Information of sensed agents, however, is located on the

perceptions layer. Obviously, the inner environment builds an intermediate layer. Any

information that is kept on the perceptions layer and is required on the agent layer must

be passed through the inner environment layer. In this model, there is no filter function

implemented. Information will always be passed through in an unaltered manner.

 BasicInnerEnvironment implements InnerEnvironment

Point2D objective
Point2D base
Properties properties
Perceptions perceptions
History history

public Side getSide()
public Rank getRank()
public Health getHealth()
public void setHealthHealty()
public void setHealthWounded()
public void setHealthKilled()
public double getPersonality(int index)
public void setPersonality(int index, double value)
public int getNumberSensedOwn()
public int getNumberOwnWounded ()
public int getNumberOwnKilled()
public int getNumberOwnFiring()
public Point2D getCenterOfGravityOwn()
public int getNumberSensedEnemies()
public int getNumberEnemiesHealthy()
public int getNumberEnemiesWounded ()
public int getNumberEnemiesKilled()
public int getNumberEnemiesWeapon()
public int getNumberEnemiesFiring()
public Point2D getCenterOfGravityEnemies()
public Point2D getObjective()
public void setObjective(Point2D point)
public Point2D getBase()
public void setBase(Point2D point)
public boolean isLeader()
public boolean getSeeMyLeader()
public Point2D getLocationLeader()
public Point2D getLastLeaderLocation()

Figure 7. UML diagram of the class BasicInnerEnvironment

43

Figure 7 provides an overview on the variables and methods of the

BasicInnerEnvironment class. As previously described, “getter” and “setter” methods

pass accurate information. It is left for future work to add dizziness to the methods. For

example, if a peacekeeper has sensed a group of demonstrators they may be 10, 11, or 12

persons. Adding a tolerance from a random variate would be a simple add-on to the

existing model.

3. Agent Properties and Personality

In the real world, various players within a peacekeeping scenario are different.

There may be military personnel as well as civilians. Some may possess the role of a

leader, others followers. As the scenario develops, originally healthy people may get

wounded or killed. People may be cautious, or behave like daredevils. Some young

soldiers may try to stay close to their leader, others may be relatively independent or even

adventuresome; some may act strictly according to given orders, while others remain

more flexible.

All the individual properties of a BasicAgent are managed by the class

BasicProperties. The variables mySide, myRank and myHealth pertain to each

BasicAgent in the peacekeeping scenario. The variable mySide is allowed to take the

value “blue” or “red.” Following the standard military notation, blue agents represent

peacekeepers and red agents represent demonstrators. The variable myRank is allowed to

take the value “leader” or “follower.” There is not a big difference between the

capabilities of a “leader” and a “follower.” Leaders in the scenario are the focal points

for their groups. Followers want to stay in touch with their leaders. The model does not

include giving and receiving orders at runtime, as this is not necessary for the simple

scenario that is being modeled. Such an orders mechanism using,

e.g., doGiveOrder(Order) and doReceiveOrder(Order) methods, is left for further

upgrades to the model. Both mySide and myRank will keep their values throughout a

simulation run. The variable myHealth, however, may change from the state “healthy” to

“wounded” or “killed” over the course of a simulation run. The use of the classes Side,

Rank and Health to manage the values which are static and final—meaning they are

44

constants that do not require objects—has proven to be more stable than variables of

type String.

The variable myPersonality is a double array of length 7 that holds the so-called

personality factors. Following Erlenbruch’s approach, personality factors are defined as:

1) Closeness to friendly: it defines how important it is for the agent to stay
close to friendly agents.

2) Obey orders: it classifies how carefully the agent follows the given order
to advance the objective.

3) Closeness to leader: it characterizes how important it is for the agent to
stay close to its leader.

4) Affinity to action: which defines the agent’s affinity towards action.

5) Risk aversion: which describes how hard the agent tries to avoid risks.

6) Shock influence: which characterizes how high the influence of an
observed casualty is for the agent. [Erlenbruch, 2002]

The seventh value in the array is reserved for the agent’s training level. The

training level influences the agent’s reaction time and its probability of being hit.

Personality factors can take on values of type double between 0.0 and 10.0. All

personality factors are subject to change during a simulation run. Therefore, personality

factors do not represent a person’s character, but rather a person’s attitude in a certain

situation. Change of personality factors is carried out in the agent layer. For example,

when the method doHearShooting(Agent agent) is invoked, the factor “obey orders” is

decreased, whereas the factors “risk aversion” and “shock influence” are increased. Also,

when the method doWounded(Agent agent) is invoked, the factor “affinity to action” is

decreased while the factors “closeness to friendly,” “risk aversion,” and

“shock influence” are increased. These factors determine the agent’s course of action.

This mechanism will be explained in Section II.C.5. For the moment, it is sufficient to

understand that an agent possesses a set of goals. In any situation, one of these goals is

the most important. The most important goal determines the BasicAgent’s next action.

Personality factors have an immediate and direct effect on the selection of the most

important goal.

For review, the object BasicInnerEnvironment contains two major components:

BasicProperties and BasicProperties. With the above explanation in mind, it is fair to

45

say that the object BasicProperties, as part of the BasicInnerEnvironment, is designed to

manage all the factors organically belonging to the BasicAgent. The reader may recall

that in this model, agents represent humans in a peacekeeping scenario. Therefore, it is

fair to think of the variables and methods of the class BasicProperties as human factors in

the simulation. The other major part of a BasicInnerEnvironment is the object

BasicPerceptions. Figure 8 provides an overview on the variables and methods of the

class BasicProperties.

 BasicProperties implements Properties

Side mySide
Rank myRank
Health myHealth
double[] myPersonality
Mover myMover

public Side getSide()
public Rank getRank()
public Health getHealth()
public double getPersonality(int index)
public void setPersonality(int index, double value)
public double getCruisingSpeed()
public double getMaxSpeed()
public Point2D getLocation()

Figure 8. UML diagram of the class BasicProperties

4. Agent Perceptions

The class BasicPerceptions is designed to manage and operate data that can be

classified as an agent’s perceptions. It is the representation of a peacekeeper’s or a

demonstrator’s awareness of his environment. The heart of the class BasicPerceptions

consists of a set of two Java ArrayLists—“sensedOwn” and “sensedEnemies”—that

count detected agents. For encapsulation purposes, BasicAgents are not stored in

ArrayLists, but are transformed into AgentContact objects. The class AgentContact only

allows a certain amount of data to be accessed via its getter methods. As was mentioned

before, information is not modified as it is saved or returned. For example, as the method

getNumberOfSensedEnemies() is invoked, it will return the true number of

AgentContacts that are stored in the sensedEnemies ArrayList. There is no fuzziness in

the model at this point. It is left for further work to add fuzziness to the information

46

management process. Instead of processing the modifications on the perceptions layer,

information could be altered as it is passed through the innerEnvironment layer when the

information is stored, when the information is returned, or both ways. Since the model

currently does not include obstacles such as buildings, the third ArrayList, named

sensedObstacles, remains an empty variable.

The following brief summary shall guide the reader through the model’s

assumptions. At first, the class BasicPerceptions provides methods to add and to remove

contacts. Whenever a different agent is picked up by the AgentSensor, an AgentContact

object is put into the respective ArrayList. For any decision-making process, there are

methods that return the number of sensed agents from both sides: the number of those

that have weapons, the number of agents that are firing, and the number of agents that are

wounded or killed. Furthermore, a peacekeeper may possess the desire to get physically

closer to his fellow peacekeepers. As military personnel open fire, demonstrators may

want to run away from the danger zone. In both cases, the location to reach is determined

by an agent’s perception of “where the majority is”—either his own or the enemy’s. In

order to model these intentions, there are methods that return the center of gravity of all

sensed contacts in either list. The possibility exists to determine a new waypoint for the

mover and thus invoke the method doStartMove(). Furthermore, it may be important to a

young soldier to stay close to his leader. In case eye contact is lost, human intuition

seeks to look first at the very location where the leader was last seen. The method

getLocationLeader() will return the location of the leader as long as he is in the agent’s

sensor range. In case the leader was removed from the sensedOwn ArrayList, the method

setLastLeaderLocation(Point2D location) helps to memorize the location where the agent

spotted his leader for the last time. The method getLastLeaderLocation() returns this

location. Figure 9 provides an overview of class BasicPerceptions’ variables

and methods.

47

 BasicPerceptions implements Perceptions

ArrayList sensedOwn
ArrayList sensedEnemies
ArrayList sensedObstacles
int ownWounded
int ownKilled
int ownFiring
int enemiesWounded
int enemiesKilled
int enemiesWeapon
int enemiesFiring
boolean seeMyLeader
Point2D lastLeaderLocation

public void reset()
public ArrayList getSensedOwnList()
public ArrayList getSensedEnemyList()
public ArrayList getSensedObstacleList()
public int getNumberSensedOwn()
public int getNumberOwnWounded()
public int getNumberOwnKilled()
public int getNumberOwnFiring()
public Point2 getCenterOfGravityOwn()
public void addSensedOwn(AgentContact contact)
public void removeSensedOwn(AgentContact contact)
public AgentContact getSensedOwn(int index)
public int getNumberSensedEnemies()
public int getNumberEnemiesHealthy()
public int getNumberEnemiesWounded()
public int getNumberEnemiesKilled()
public int getNumberEnemiesWeapon()
public int getNumberEnemiesFiring()
public Point2 getCenterOfGravityEnemy()
public AgentContact getSensedEnemy(int index)
public void addSensedEnemy(AgentContact contact)
public void removeSensedEnemy(AgentContact contact)
public void removeKilledEnemy(Agent agent)
public AgentContact getSensedObstacle(int index)
public boolean getSeeMyLeader()
public Point2D getLocationLeader ()
public Point2D getLastLeaderLocation()
public void setLastLeaderLocation(Point2D location)

Figure 9. UML diagram of the class BasicPerceptions

5. Agent Goals, Tickets, and Management

For review, Figure 5 depicts the exchange of information between a BasicAgent’s

BasicInnerEnvironment (with its two main elements: objects, BasicProperties, and

BasicPerceptions) and the outer environment. Besides detectors and effectors, this loop

also includes an apparatus called the performance system. The purpose of this chapter is

48

to explain the agent’s performance system. The heart of this performance system is the

goal apparatus. Erlenbruch has shown that it is useful for PKO agents to have a set of

goals and a mechanism to organize and manage:

The goal structure defines the agent’s desires. The desires depend on the
agent’s personality and the environment, as the agent perceives it. Out of
a given number of goals the agent always tries to achieve its most
important goal. This is one of the agent’s ways to adapt to the perceived
environment. [Erlenbruch, 2002]

Following Erlenbruch’s idea, it appears appropriate for this simulation to operate

using five goals. Each goal is organized in its own Java class. All of these classes are

implementations of the Goal interface and are extended from a BasicGoal. The

BasicGoal class consists of all the variables and methods that are used by all goals.

Specifically, the BasicGoal has one variable of type TicketManager, which is

an interface.

Figure 10 provides a breakup of the agents’ performance system into goals and

tickets. Based on Professor Hiles’ general design of agents, tickets are representations of

possible actions:

Each goal has a certain number of tickets, which generate the action the
agent will take to respond towards the outer environment. […] As the
goals, these tickets also have associated weights and a measurement
function to evaluate the weight value. [Erlenbruch, 2002]

Goals are representations of a person’s desires and tickets are actions associated

with a goal. To realize a person’s desires, there may be various actions that are

promising. Any goal requires a ticket manager apparatus, which in turn makes the

decision of what action to carry out.

49

Figure 10. Hiles’ agent model [Erlenbruch, 2002]

The heart of the class BasicGoal is the method updateSituation(). This method

represents an evaluation carried out by a peacekeeper or a demonstrator in a certain

situation and computes ratios such as:

1) ownRatio: The number of sensed own agents relative to the total number
of sensed agents.

2) enemyRatio: The number of sensed enemy agents relative to the total
number of sensed agents.

3) distanceToObjectiveRatio: The distance to the objective relative to the
initial distance to the objective.

4) distanceToLeaderRatio: The distance to the own leader relative to the
sensor range.

5) distanceToFormationRatio: The distance to the center point of the sensed
own agents relative to the sensor range.

6) distanceToEnemyRatio: The distance to the center point of the sensed
enemy agents relative to the sensor range.

7) shock: A weighted sum of wounded and killed agents on both sides
relative to the total number of sensed agents

50

All of the factors listed above are stored in a vector called mySituationalState.

This data structure serves as a numeric expression for an agent’s situational evaluation.

Together with the personality factors, mySituationalState is then used to compute

individual goals.

Each individual goal is represented by a subclass of BasicGoal, thus adding its

own variables and methods to the superclass.23 For the simplified scenario, where a

group of peacekeepers are encountered by a larger group of demonstrators, one single

ticket associated to each goal is sufficient. Therefore, in this special case the goal and the

associated ticket are closely coupled. Any of the tickets is a class that implements the

TicketManager interface. This way, the model is flexible for future upgrades. Instead of

a single ticket, a complete ticket manager apparatus (similar to the goal manager

apparatus) may be implemented.

Having explained the idea of goals and tickets in general, the five goals of the

BasicAgent and their associated tickets are:

1) GoalAdvanceObj and TMAdvanceObj represent an agent’s desire and
action to move toward its objective. In this simulation the objective of an
agent is a location. If this goal is active, it represents the agent’s primary
desire to move to this location. Like any other goal it has an algorithm to
compute the goal’s score in order to have the BasicGoalManager choose
the primary goal of the agent. GoalAdvanceObj also has a method that
computes the next waypoint for the agent. With the design choice to
abandon a path mover manager, the algorithm that decides on the next
waypoint is best implemented in the goal. This goal, like the other goals,
has a method to compute the speed at which the agent then moves to the
next waypoint.

2) GoalBackToFlag and TMBackToFlag represent a person’s desire and
action to move towards his base. All agents receive a second location
called the “base” from the input data set. The base is the agent’s starting
point and at the same time represents a secure area to withdraw to. In the
event this goal has the highest score, it will compute the next waypoint for
the agent so that it will move back to its base. Also, the goal has a method
to compute speed of movement.

3) GoalBackToFormation and TMBackToFormation represent an agent’s
desire to move closer to its own group. In order to compute the next
waypoint the class takes advantage of the method

23 When the principle of Inheritance is applied in object oriented programming, classes extend their
superclasses. For example, BasicAgent extends its superclass UniformLinearMover.

51

getCenterOfGravityOwn() in the BasicPerceptions class. Instead of
randomly selecting an agent and moving towards his location, the next
waypoint will be at a location that is closer to the majority of the sensed
agents. Similar to other goals, the method getTicketSpeed() computes a
moving speed that applies to the agent’s situation and personality.

4) GoalBackToLeader and TMBackToLeader represent a person’s desire to
move closer to his or her leader. This goal regularly gets a high score
whenever the leader of one side leaves the sensor range of an agent.
Based on the personality factors, it may not get the highest score, but if it
does, the goal becomes the active one. The method getNextWayPoint()
then computes a waypoint in the direction where the agent last sensed the
leader. The moving speed is then computed according to the other goals.

5) GoalEngageEnemy and TMEngageEnemy represent an agent’s desire to
act forcefully or even violently towards other agents. Based on the
situation, this goal and its associated ticket make the decision whether to
fire in the air or to fire on another agent. There are only these two choices
at this point. Therefore, it could be handled by only one ticket. In case an
upgrade should implement other actions under this goal, e.g., “push the
enemy aside” or “keep hold of an enemy,” the implementation of a ticket
manager and multiple tickets is recommended.

The class BasicGoalManager, which is an implementation of the GoalManager

interface, is designed to manage these individual goals. The variable goalKeeper of type

Goal holds all goals. The method determineHighestGoal() calls all goals to return their

current score and returns the index of the goal with the highest score. Finally, the method

getNextAction() calls for the active goal to return the Action according to its ticket.

Action objects are storage devices for the agents’ actions, designed in order to increase

the stability of the simulation. An Action object is an information triplet that consists of

an action name, an action destination, and an action speed.

Figure 11 depicts the complete structure of the BasicGoalManager. It shows that

the BasicGoalManager class instantiates all of the goals. They are kept in the variable

goalkeeper, which is of type Goal [].24 Therefore, the BasicGoalManager is flexible

enough to incorporate more goals as well as others. Then, any of the goals instantiates its

individual ticket (instead of a ticket manager that would be capable of managing multiple

tickets for a single goal).

24 The notation Goal [] means an array of objects of type Goal. Recall that Goal is a Java interface.

52

 BasicGoalManager
implements GoalManager

Goal [] goalKeeper
double [] goalScores
Action nextAction

public int dertermineHighestGoal();
public Action getNextAction();
public void moveToHighestGoal();

GoalEngageEnemy extends BasicGoal
implements Goal

TicketManager myTicketManager
InnerEnvironment innerEnvironment
Double [] mySituationalState

public void updateSituation();
public Point2D getNextWayPoint();
public ActionName getTicketName();
public double getTicketSpeed();
public double getGoalScore();

GoalBackToLeader extends BasicGoal
implements Goal

TicketManager myTicketManager
InnerEnvironment innerEnvironment
Double [] mySituationalState

public void updateSituation();
public Point2D getNextWayPoint();
public ActionName getTicketName();
public double getTicketSpeed();
public double getGoalScore();

GoalBackToFormation extends BasicGoal
implements Goal

TicketManager myTicketManager
InnerEnvironment innerEnvironment
Double [] mySituationalState

public void updateSituation();
public Point2D getNextWayPoint();
public ActionName getTicketName();
public double getTicketSpeed();
public double getGoalScore();

GoalBackToFlag extends BasicGoal
implements Goal

TicketManager myTicketManager
InnerEnvironment innerEnvironment
Double [] mySituationalState

public void updateSituation();
public Point2D getNextWayPoint();
public ActionName getTicketName();
public double getTicketSpeed();
public double getGoalScore();

GoalAdvanceObj extends BasicGoal
implements Goal

TicketManager myTicketManager
InnerEnvironment innerEnvironment
Double [] mySituationalState

public void updateSituation();
public Point2D getNextWayPoint();
public ActionName getTicketName();
public double getTicketSpeed();
public double getGoalScore();
 TMEngageEnemy extends BasicTM

implements TicketManager

InnerEnvironment innerEnvironment
double ticketSpeed
ActionName actionName
double [] oldSituationalState

public double getTicketSpeed();
public double getTicketName();
public void reset();

TMBackToLeader extends BasicTM
implements TicketManager

InnerEnvironment innerEnvironment
double ticketSpeed
ActionName actionName
double [] oldSituationalState

public double getTicketSpeed();
public double getTicketName();
public void reset();

TMBackToFormation extends BasicTM
implements TicketManager

InnerEnvironment innerEnvironment
double ticketSpeed
ActionName actionName
double [] oldSituationalState

public double getTicketSpeed();
public double getTicketName();
public void reset();

TMBackToFlag extends BasicTM
implements TicketManager

InnerEnvironment innerEnvironment
double ticketSpeed
ActionName actionName
double [] oldSituationalState

public double getTicketSpeed();
public double getTicketName();
public void reset();

TMAdvanceObj extends BasicTM
implements TicketManager

InnerEnvironment innerEnvironment
double ticketSpeed
ActionName actionName
double [] oldSituationalState

public double getTicketSpeed();
public double getTicketName();
public void reset();

Figure 11. UML diagram of the BasicGoalManager, Goals, and Tickets

53

D. SCENARIO DESIGN

This chapter explains the scenario which is the basis for the analysis. Generally

speaking, the scenario should be as slim as possible and as rich as necessary in order to

answer the research questions. Since the model was not developed from scratch, but built

up on previous work, it made sense not to start with a completely new scenario. This

chapter provides a summary of previous work and explains the two tools used to store

and to display a scenario—XML files and the 2-D animation.

1. Previous Work

The scenario in this analysis builds upon work conducted by Erlenbruch. He

generalizes an excerpt of a map exercise used in the German Army for leadership training

in the context of peacekeeping missions:

The map exercise takes place in PRIZREN, KOSOVO. German
peacekeeping forces have been deployed to PRIZREN as part of the
UN KFOR forces. The following extract of an order and three situation
developments describe the current situation and the task for one company,
3./ Einsatzbataillon 1 of the TASK FORCE PRIZREN, which has been
deployed to PRIZREN. The KPC and PBP, which are mentioned in the
order, are groups that fought in the war and that are now illegal terror
organizations. [Erlenbruch, 2002]

For his simulation, Erlenbruch extracts one scenario, generalizes it, and programs

a complete animation from scratch. He transfers the urban terrain of the town of Prizren,

Kosovo into the2-D representation shown in Figure 12.

54

Figure 12. Generalized PRIZREN environment [Erlenbruch, 2002]

For more information on the above scenario, the reader may reference Chapter III

of Erlenbruch’s thesis.

2. The Outer Environment in its 2-D Animation

The focus of this thesis is analysis of encounters between peacekeepers and

demonstrators. Urban terrain representations (buildings, roads, rivers, etc.) usually

require a computationally intensive line-of-sight algorithm. The simulation presented in

this thesis assumes encounters takes place on a spacious plaza. Interactions of influence

between personality factors and arousal of violence are explored. Simulating urban

terrain consumes a tremendous amount of computing power without adding additional

knowledge to the research questions explored in this thesis.

Our MOEs focus on the time differences between the following events. As

explained in Section II.B.3, three different MOEs can be measured during the

simulation runs:

1) timeToFirstShot – timeToFirstDetection

2) timeToFirstWounded – timeToFirstDetection

3) timeToFirstKilled – timeToFirstDetection

55

Implicitly, there is one more MOE that may result from the other three: it may

happen that no kill occurs over the course of a simulation run (sometimes not even a

shot). In these cases, there is no data output, as will be shown in Chapter III.

Figure 13 (best viewed in color) shows the animation of the outer environment.

For Simkit based simulations, particularly simulations that use Movers, the actions

package provides a set of classes that build an animation. This animation was very useful

during the development, debugging, and verification of the model. The programmer

could actually observe the movements of the BasicAgents.

At this point, the animation does not display actions other than movements,

e.g., agents firing, getting wounded, getting killed. Incorporating symbologies for these

actions is left for future work. In case the model is used for analysis techniques that

exceed the statistical methods applied in this thesis, e.g., course of action development, it

may be highly desirable to have such a sophisticated animation.

Figure 13. Scenario for simulation in a 2-D animation

In Figure 13, the small squares represent humans—the blue ones are

peacekeepers, the red ones are demonstrators. Diamonds represent leaders. These

56

symbols are fixed to the underlying movers and visually move when the simulation

begins. Flags represent the base of each side and the ellipses are the objectives. As the

reader can observe, the group of peacekeepers are at their objective, whereas the

demonstrators need to pass the peacekeepers on their way towards the red objective. As

soon as the peacekeepers sense demonstrators (and vice versa), the events begin to

escalate—to include possible firings in the air and firings at person entities.

3. The Use of XML Files

Among other applications, XML technology is used to model data for computer

processing. For a brief background explanation on this technology the following

summary is taken from Magrolis’ (2003) thesis, which also includes XML files as data

input tools for a simulation model on aircraft operational availability.

XML is platform and language independent, open source, license free, and has

international standards. XML technology addresses how to represent data and

surrounding information to describe its content and form, thereby enhancing the data’s

meaning. For example, sections in a newspaper are differentiated by their spacing and

position on the page and the use of different fonts for titles and headings. XML works

much the same way, but uses symbols instead of spaces and fonts [Ray, 2001].

If an input file has no boundaries or labels, then a program cannot possibly know

how to treat a piece of text and distinguish it from any other piece. A newspaper without

spaces and only one font style is a large and uninteresting block of text. A computer

program would not be able to distinguish where a particular article began or ended. XML

solves this problem [Ray, 2001].

XML is not a computer language, but a standard for creating markup languages

(i.e., tags of element names) that meet XML criteria. In other words, XML describes a

syntax that can be used for individuals to create their own unique markup language.

Individuals are able to create their own set of “tags” in which to describe their data when

using XML [Hunter, 2001].

Another value to using data stored in an XML document is that it can easily be

checked for errors prior to being used in a computer program. To do this, a schema was

57

developed to validate the data prior to its use. A schema is a “template” that sets the data

requirements and provides a way to define the XML document. As an XML-based

language is used for structuring XML documents, the schema describes constraints that

govern the order and sequence of data and specifies permissible value spaces for all data

used inside the document [Kim, 2003].

If a required data element is missing, the schema will not validate the XML

document. Something as simple as an extra “space” character in the input file can ruin a

simulation run. Not only could an unwanted space character ruin the simulation, for large

files it could take hours, if not days, to locate the error. When validating an XML

document with a schema, the schema will find the errors for the user, thus saving hours

(possibly days) of needless troubleshooting.

Figure 14 displays a portion of one of the XML documents created for this thesis.

Note that there are special symbols called “markup” or “tags.” The tag <BlueLeader> is

called a start tag, and the tag </BlueLeader> is called an end tag and they define the

beginning and end of a collection of text. That is, they act as bookends marking the

beginning and end of data. Each set of “tags” and the data in between them are

collectively called an “element” [Ray, 2001].

58

 <Scenario>
 <Name>FirstXMLScenario</Name>
 <BlueForces>
 <BlueLeader>
 <Side>Blue</Side>
 <Rank>Leader</Rank>
 <Personality>
 <CloseToFriendly>1.0</CloseToFriendly>
 <ObeyOrders>1.0</ObeyOrders>
 <CloseToLeader>1.0</CloseToLeader>
 <AffinityToAction>10.0</AffinityToAction>
 <RiskAversion>1.0</RiskAversion>
 <ShockInfluence>1.0</ShockInfluence>
 <Training>1.0</Training>
 </Personality>
 <InitialLocation>
 <XValue>100.0</XValue>
 <YValue>-100.0</YValue>
 </InitialLocation>
 <Base>
 <XValue>100.0</XValue>
 <YValue>-100.0</YValue>
 </Base>
 <Objective>
 <XValue>150.0</XValue>
 <YValue>-100.0</YValue>
 </Objective>
 <Sensor>
 <Range>105.0</Range>
 <Type>AgentSensor</Type>
 </Sensor>
 <Seeds>
 <ReactionSeed>123456</ReactionSeed>
 <TargetSeed>654321</TargetSeed>
 </Seeds>
 <Weapon>
 <Name>P8</Name>
 <Capacity>8</Capacity>
 <MaxRange>50.0</MaxRange>
 <Deviation>0.08</Deviation>
 <RoundsPerMinute>7.0</RoundsPerMinute>
 </Weapon>
 </BlueLeader>

Figure 14. Sample Portion of XML document

Figure 14 shows how XML data is combined into a hierarchical structure. The

items in < > relate to each other in parent/child relationships. For example, the elements

<CloseToFriendly>, <ObeyOrders>, <CloseToLeader>, <AffinityToAction>,

<RiskAversion>, <ShockInfluence>, and <Training> are all children of the <Personality>

element, which is a child of the <BlueLeader> element. Data in Figure 14 are referenced

59

by their element name, thus making the querying of data less prone to errors. That is,

information formatted according to XML standards is “self-describing” [Hunter, 2001].

Looking at the data, the reader can easily locate the information pertaining to,

e.g., “Weapon.” The Element <Weapon> consists of five child elements listed between

<Weapon> and </Weapon>. When a scenario is created and the <Name> of the

<Weapon> is required, in this case “P8” is returned.

While Figure 14 shows a sample data structure in an editor window, Figure 15

depicts the “grid view” of the same file in an XML development environment, such as

Altova XML Spy. Doing a copy-paste, it is very easy to change an existing scenario,

e.g., putting additional Red Followers in it. To change the data is even easier—the actual

values are just keyed in to their cells.

Figure 15. Scenario for simulation in an XML IDE (Altova XMLSpy)

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

III. EXPERIMENTS, RESULTS, AND ANALYSIS

One of the main reasons why simulation is such a successful technique in

operations research is that it allows analyses of systems and processes. Using simulation

one may study the effects on a variation of treats without the necessity to carry out live

experiments, which may be time-consuming, expensive, dangerous or even impossible.

Figure 16 shows a depiction of a generalized input-output relationship of a simulation

model. In our case, the simulation model represents a real-world peacekeeping scenario.

X is multidimensional and symbolizes the space of possible input factors, e.g., the

number of peacekeepers, the number of demonstrators, etc. Y is the range of possible

outcomes. The figure suggests there is a relationship between X and Y. An analyst is

interested in finding this relationship in order to draw conclusions for the real-world

system the simulation represents. Specifically, if the simulation model is an ABS, it is

the surprise, the unexpected, the analyst is searching. Any surprise will result in further

explorations. The discussion of the phenomenon with experts of the system may then

lead to conclusions, no one would have thought of.

S i m u l a t i o n

M o d e l

X Y

Figure 16. Input-output relationship of simulation models

However, care must be taken to make sure that valid conclusions are drawn from

the results of a simulation model. Many people make a huge effort on designing and

developing a simulation model. Analysts must pay close attention in inputs and outputs

if they wish to draw valid conclusions from a simulation model. Law and Kelton

criricize treating a simulation study as only an exercise in computer programming.

In many simulation studies a great deal of time and money is spent on
model development and programming, but little effort is made to analyze
the simulation output data appropriately. As a matter of fact, a very
common mode of operation is to make a single simulation run of
somewhat arbitrary length and then to treat the resulting simulation
estimates as the ‘true’ model characteristics. Since random samples from

62

probability distributions are typically used to drive a simulation model
through time, these estimates are just particular realizations of random
variables that may have large variances. As a result, these estimates
could, in a particular simulation run, differ greatly from the corresponding
true characteristics for the model. The net effect is, of course, that there
could be a significant probability of making erroneous inferences about
the system under study. [Law and Kelton, 2000]

The simulation model itself was explained in detail in Chapter II. This chapter

deals with the input and output of the simulation. On the input side, a design of the

experiments that were carried out is described. Then, the second part of this chapter

deals with a quantitative analysis of the output.

A. DESIGN OF EXPERIMENT (DOE)

The space of possible scenarios of the model is extremely wide. For example, the

model allows for a huge variation in numbers of agents. There may be one or more

groups of agents for each side, i.e., “red” or “blue.” Each group of agents may have one

or more “leaders.” Each group of agents may start from different locations in the

2-D animation space, may have a different base, a different objective, etc. Of course, the

total number of agents is limited by the available computing power. As a rule of thumb,

the model in its current design allows for a total of up to 100 agents. Because of the

exponentially increasing number of detections, undetections, and decision-making

processes, a single run without animation on a modern PC (Pentium 4, 2.66 GHz,

512 MB) may last up to three hours, depending on the number of agents, their starting

conditions, and the simulation stopping criteria.

The agents themselves may have different personality factors, different training

levels, different weapons, and different sensors. They may start at different locations and

advance towards different objectives. These parameters may be all homogeneous,

groupwise homogeneous, or completely heterogeneous.

So far, it should have become obvious that it is impossible to explore all input

parameters. Even the exploration of the six personality factors plus the training level in a

two-level full factorial design would lead to a total number of 27 = 128 experiments.

63

Each experiment requires its own XML input file. The output of each experiment will

also be stored in an extra text file.

While Figures 14 and 15 showed portions of the input in XML notation, Table 1

depicts the complete information of one exemplary XML file. As explained earlier, even

the number of groups of agents or the number of leaders or followers in each group may

be variables, and thus be subject to some sort of “tactical analysis.” In this table, we have

a group of eight peacekeepers (one of them is a leader) and three times as many

demonstrators. The personality factors are groupwise homogeneous. Again, each

nongrey cell of this table can be considered as an input variable.

64

Si
de

R
an

k

C
lo

se
To

Fr
ie

nd
ly

O
be

yO
rd

er
s

C
lo

se
To

Le
ad

er

A
ffi

ni
ty

To
A

ct
io

n

R
is

kA
ve

rs
io

n

Sh
oc

kI
nf

lu
en

ce

Tr
ai

ni
ng

xC
oo

rd

yC
oo

rd

xC
oo

rd

yC
oo

rd

xC
oo

rd

yC
oo

rd

R
an

ge

Ty
pe

N
am

e

C
ap

ac
ity

M
ax

R
an

ge

D
ev

ia
tio

n

R
ou

nd
sP

er
M

in
ut

e

1 Blue Leader 5.0 5.0 5.0 5.0 5.0 5.0 5.0 100.0 -100.0 100.0 -100.0 150.0 -100.0 100.0 AgentSensor P 8 8.0 50.0 0.1 3.0

2 Blue Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 100.0 -100.0 100.0 -100.0 150.0 -100.0 100.0 AgentSensor G 36 30.0 500.0 0.1 6.0

3 Blue Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 100.0 -100.0 100.0 -100.0 150.0 -100.0 100.0 AgentSensor G 36 30.0 500.0 0.1 6.0

4 Blue Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 100.0 -100.0 100.0 -100.0 150.0 -100.0 100.0 AgentSensor G 36 30.0 500.0 0.1 6.0

5 Blue Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 100.0 -100.0 100.0 -100.0 150.0 -100.0 100.0 AgentSensor G 36 30.0 500.0 0.1 6.0

6 Blue Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 100.0 -100.0 100.0 -100.0 150.0 -100.0 100.0 AgentSensor G 36 30.0 500.0 0.1 6.0

7 Blue Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 100.0 -100.0 100.0 -100.0 150.0 -100.0 100.0 AgentSensor G 36 30.0 500.0 0.1 6.0

8 Blue Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 100.0 -100.0 100.0 -100.0 150.0 -100.0 100.0 AgentSensor G 36 30.0 500.0 0.1 6.0

9 Red Leader 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor P 8 8.0 50.0 0.1 3.0

10 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor P 8 8.0 50.0 0.1 3.0

11 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor P 8 8.0 50.0 0.1 3.0

12 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor P 8 8.0 50.0 0.1 3.0

13 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor P 8 8.0 50.0 0.1 3.0

14 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor P 8 8.0 50.0 0.1 3.0

15 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

16 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

17 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

18 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

19 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

20 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

21 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

22 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

23 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

24 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

25 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

26 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

27 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

28 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

29 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

30 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

31 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

32 Red Follower 5.0 5.0 5.0 5.0 5.0 5.0 5.0 300.0 -300.0 300.0 -300.0 50.0 -50.0 90.0 AgentSensor Stone 3.0 10.0 1.0 1.0

Weapon

ex
pa

m
pl

e
sc

en
ar

io Personality Factors Initial Location

A
 g

 e
 n

 t

 N
 u

 m
 b

 e
 r

Base Objective Sensor

Table 1. Complete information space of simulation input files

For the scope of this thesis, we show that the model is data-farmable with an

exemplary analysis. Out of the complete input space, we pick three personality factors

and carry out a two-level full factorial design. Therefore, 23 = 8 experiments are carried

65

out. The research question for this exemplary analysis is: Which of these three input

factors has the most significant influence on the result of the simulation runs?

In order to focus on the three chosen variables, it is indispensable to keep the

other factors constant. In other words, the experiments take place in a scenario consisting

of a constant and a variable portion.

The constant portion of the scenario is described as follows:

1) There are 8 blue and 24 red agents.

2) Each group has one leader; the rest are followers.

3) For the blue group, the initial location is at their base (100.0, –100.0);25
their objective is slightly shifted to the right (150.0, –100.0). The leader
starts exactly at the initial location. The followers are scattered randomly
around the leader.

4) Likewise, for the red group, initial location and base are at (300.0, –300.0)
and their objective is at (50.0, –50.0). This way, the red group, advancing
towards their objective, needs to pass the blue group.

5) The sensor type is AgentSensor. For the blue agents, the range is 100.0,
whereas the red agents have a range of 90.0.

6) The blue leader is armed with a pistol of type P8. Blue followers have the
German standard infantry rifle G36.

7) In the red group, only the leader and five other agents are armed with the
Pistol P8. When the scenario escalates during a run, the rest of the group
may use stones as weapons.

8) All agents (red and blue) have the same personality factors. Therefore, we
have homogeneous groups, both are equal.

The variable portion of the scenario focuses on the personality factors.

“CloseToFriendly,” “AffinityToAction,” and “RiskAversion” shall be the variable

factors, whereas “ObeyOrders,” “CloseToLeader,” ”ShockInfluence,” and “Training” are

kept constant. To give a short review of Section II.C.3, “Training,” together with the

other personality factors, is stored in the array “myPersonalities” of the BasicProperties

class. The values of these personality factors range from 0.0 to 10.0. Therefore, we

define the constant level to be 5.0, whereas the low level is 1.0 and the high level is 10.0.

25 Coordinate notation in parentheses, meaning (x-coordinate, y-coordinate). The y-coordinate is

negative because the origin of the coordinate system is in the top left corner of the animation window.

66

Table 2 shows the two-level full factorial design as an extract from the

simulation’s information input space. The letters “C,” “L,” and “H” symbolize the

different settings: constant (5.0), low (1.0), and high (9.0).

C
lo

se
To

Fr
ie

nd
ly

O
be

yO
rd

er
s

C
lo

se
To

Le
ad

er

Af
fin

ity
To

Ac
tio

n

R
is

kA
ve

rs
io

n

Sh
oc

kI
nf

lu
en

ce

Tr
ai

ni
ng

S1 L C C L L C C

S2 L C C L H C C

S3 L C C H L C C

S4 L C C H H C C

S5 H C C L L C C

S6 H C C L H C C

S7 H C C H L C C

S8 H C C H H C C

Sc
en

ar
io

Personality Factors

Table 2. Experiment design for three input factors

Each of these scenarios requires its own XML input file. Likewise, the output of

each scenario will be written to its own text file. The simulation program is capable of

reading in a list of output files successively without having to restart the simulation again

and again. In order to gather a sufficient number of data points, each scenario is run

100 times. Therefore, the total number of data points for the analysis is:

8 scenarios * 100 runs = 800 data points

To give a short review of Section II.B.3, the analysis focuses on if there is a kill

and, given a kill, the time until the first kill. In order to eliminate possible effects of the

personality factors on the moving speed, especially of the red group, the time until the

first detection is subtracted. Therefore, the analysis focuses on the escalation of the

situation; an imaginary stopwatch is started as soon as the first agent detects an agent

from the other side and is stopped when the first agent is killed.

67

B. OUTPUT ANALYSIS

Thorough output analysis is the reason why we do simulation in

operations research. As explained before, the design of a model, as well as the design of

the experiments, has a primary purpose: To apply statistical methods to the output data

so that we can glean insights into the real-world system represented by the simulation. At

the end of the day, if one has not gained some new knowledge or insight from his

simulation, what was the whole effort good for?

This chapter provides an exemplary output analysis. The purpose is to show how

the model can be utilized in order to draw conclusions and gain a deeper insight into the

type of peacekeeping scenarios that are simulated.

At first, a very general overview of the output data is provided. As it turns out,

there is a remarkable quantity of simulation runs in which not even a single kill occurs.

In these runs, the MOE (timeToFirstKill – timeToFirstDetection) can not be calculated.

Therefore, we will apply a statistical method to the complete output data that allows for a

binary classification. The question here is: how strong is the influence of the three

variable input factors on the occurrence of kills? The statistical approach that is applied

is the technique of classification trees. Finally, the data is filtered and further analysis is

carried out under the premise “given a kill.” In this case, a linear regression model on the

three main effects and their interaction terms is built.

Further analysis is left for future work. As an example, it would be interesting to

explore all seven personality factors. We recommend defining more than two levels for

each. Consequently, a three-level full factorial design would mean 37 = 2,187 scenarios.

For each scenario, the model must run a sufficient number of times. As explained in the

previous chapter, each scenario requires its own XML input file. Each scenario will also

generate its own output file. Therefore, it is highly recommended to apply more efficient

experimental designs, such as Latin Hypercubes, to extended analyses.

The exemplary analysis in this chapter provides some data on the computing time

required. Specifically, 100 runs of a single scenario (8 blue agents, 24 red agents) on an

average PC (Pentium 4, 2.66 GHz, 512 MB) lasts about 30 minutes. Of course, the

68

duration of a run also depends on the stopping criteria of the simulation. For this

exemplary analysis, the simulation is stopped after two agents are killed, five agents are

wounded, or after 200 time units.

For future analysis, it is highly recommended to do test runs, taking advantage of

the animation, at first. With the experience of these, the stopping criteria of the

simulation can be adapted.

1. General Overview on Output Data

Appendix B, at the back of this thesis, provides a table of the output data.

Originally, the simulation program saved the output of each scenario separately in a text

file. The table in Appendix B still has a block structure so that one can easily determine

the scenario and the run number for each data point. The first column (fD) lists the

timeToFirstDetection, the second (fS) shows the timeToFirstShot, and the third (fK)

contains the timeToFirstkill. Finally, the fourth column contains a “finished”-statement

for each run, including the run number. The reader may count 100 runs for each block,

e.g., scenario. This sums up to a total of 800 data points.

The first observation to make is that during some runs we don’t obtain a kill;

sometimes not even a shot. Furthermore, whenever there is a kill we need to compute the

MOE which was defined as timeToFirstKill – timeToFirstDetection. To review,

timeToFirstDetection is subtracted to eliminate the effects of the personality factors on

the agents’ speed of motion.

A closer look reveals that there are two scenarios (S2 and S6) in which no shots

and no kills occur. Obviously, these scenarios have input combinations that are capable

of avoiding an escalation and the occurrence of violence.

Table 3 provides a “simple stats” overview on the data. Clearly, the combinations

of input factors have a strong effect on our MOEs. A look at the first row alone reveals

significant differences in the output. Scenarios 2 and 6 (S1, S6) generated no kills at all.

In scenarios 1 and 8 (S1, S8), less than 50% of all 100 runs ended with a kill, whereas in

Scenarios 3 and 4 (S3, S4) we find killed agents in more than 50% of the cases.

Scenarios 5 and 7 (S5, S7) generate kills in every single run.

69

S1 S2 S3 S4 S5 S6 S7 S8

11 0 76 66 100 0 100 45

Mean 33.28 #DIV/0! 43.93 78.20 47.37 #DIV/0! 62.43 51.57

Var 4.75 #DIV/0! 599.28 891.84 13.46 #DIV/0! 121.21 17.66

Std Dev 2.18 #DIV/0! 24.48 29.86 3.67 #DIV/0! 11.01 4.20

Lower Quartile 31.61 #NUM! 23.95 58.85 44.61 #NUM! 57.47 49.84

Min 31.02 0.00 8.43 28.64 41.59 0.00 29.73 43.10

Median 32.13 #NUM! 44.71 72.36 46.82 #NUM! 64.05 50.86

Max 36.15 0.00 124.59 135.00 57.18 0.00 90.64 65.14

Upper Quartile 35.76 #NUM! 62.61 97.20 49.54 #NUM! 67.07 52.93

tim
e

fro
m

 fi
rs

t d
et

ec
tio

n
to

 fi
rs

t k
ill,

gi

ve
n

th
er

e
w

as
 a

 k
ill

Number of runs
ending w/ kill

Table 3. Summary statistics of the output data

Rows two, three and four show there is a huge difference in the mean values,

variances and standard deviations between the eight scenarios. Rows five through nine

show the data that is necessary to draw boxplot graphs.

Figure 17 shows the boxplots of the output data. Not only are the medians of the

MOE different, but also the spread of the data for each scenario. Interestingly, the

scenarios seem to be pairwise similar. S2 and S6 don’t generate kills at all. S3 and S4

have a huge spread, but are very different in their medians. S5 is similar to S8 in both

median and spread, but there also are similarities between S1 and S8. The median of S7

is close to the median of S4; however, S4 has a wider spread.

Of course, we wish to understand the reasons for these similarities. Table 4

provides an overview of the full factorial design for the three variable personality factors.

S2 and S6 both have in common a low AffinityToAction (aTa) and a high RiskAversion

(rA). With this combination, closeToFriendly (cTf) seems to play an insignificant role.

CloseToFriendly AffinityToAction RiskAversion
S1 L L L
S2 L L H
S3 L H L
S4 L H H
S5 H L L
S6 H L H
S7 H H L
S8 H H H

Sc
en

ar
io

Personality Factors

Table 4. Experiment design for three input variables

70

0
20

40
60

80
10

0
12

0
14

0

s1 s2 s3 s4 s5 s6 s7 s8

Boxplots of output data for scenario s1 ... s8Boxplots of output data for scenario s1 ... s8

scenarios

Boxplots of output data for scenario s1 ... s8

scenarios

M
O

E
=

fK
 -

fD

Figure 17. Boxplots graphs of the output data

The huge spread in S3 and S4 seemingly is caused by a low cTf and a high aTa.

For this combination, the third variable, rA, causes a remarkable shift in the median

MOE. According to one’s intuition, if rA gets higher one would expect that the time to

the first kill would also increase.

There is no intuitive explanation as to why the outputs of S5 and S8 are so

similar. We observe that cTf was held at a high level, whereas both aTa and rA are

shifted from low to high. Seemingly, the fact that there is only a minor effect on the

spread comes from keeping cTf on a high level. Then, if aTa and rA are equal and

changed at the same time there does not seem to be any significant effect on the

median MOE.

The similarities between S8 and S1 are intuitive: There is no significant effect

when all three variables are changed at the same time. If all variables are low, none is

relatively low, and if all are high, none is relatively high.

71

From S4 to S7, two variables change: cTf is increased and rA is decreased—only

aTa remains on a high level. The decrease in spread may be caused by the increase of

cTf, but, there is no significant effect on the median by decreasing rA anymore.

To sum up, the combination of a low aTa and a high rA is very unfortunate for

our analysis since the situation does not escalate. Watching a single run with such a

setting shows that the red agents finally reach their objective, e.g., pass the group of blue

peacekeeping agents whose duty it is to keep them from getting there. As a conclusion,

the possibility of using force needs to come along with the ability and the attitude to do

so. In other words, if a group of peacekeepers fail to use their weapon as an ultimate

means they may be unable to keep their opponents from reaching their objective.

Furthermore, it looks like cTf does not affect the MOE as much as the other two

variables do. Nonetheless, cTf does have a remarkable effect on the variance. At the

moment, we cannot determine which of the two variables aTa and rA have a stronger

effect on the MOE, however, there seems to be some interaction between the two.

In the following section two different statistical techniques are applied on the

output in order to determine the input variable with the greatest effect and better

understand the relationship between our input variables and the MOEs.

2. Classification Tree Categorical Output Data

Our output data can be categorized into two different classes: runs that ended

without kills and those that ended with kills. The previous chapter demonstrated that

there is a strong influence from the input variables on the occurrence of a kill. As a

matter of fact, we have already found out that the combination of a low aTa and a high rA

never results in a kill. How about the other combinations?

Classification tree methods are a good choice whenever the purpose is

classification. They also allow the prediction of outcomes by a set of if-then rules that

are almost self-explaining and can easily be understood. Classification trees are built

through a process known as binary recursive partitioning. Recursively, the whole data set

is split into partitions in order to split it up further on the branches. The splits occur

based on the input variable levels. From among all possible splits, the split that partitions

72

the node into the two most homogeneous nodes is made. That is, the outcomes in the

subnodes are more homogenous than in the parent node.

The whole output data set consists of 800 data points, including 398 points with a

kill, i.e., a numeric value for the timeToFirstKill (fK). These data points allow the

computation of the MOE (timeToFirstDetection – timeToFirstKill). Consequently,

402 data points do not have a value in the fK column.

In order to build the tree model in S-Plus, the data set needs to be manipulated. A

new column with the binary factor (O for no kill, 1 for a kill) needs to be established.

S-Plus requires the values in this column to be of type “factor.”

Figure 18 displays the classification tree model generated from the complete data

set. A classification tree is read top-down. Starting at the root (All Rows), one soon hits

the first node. Any split of the line is denoted a node and represents a decision. The

decision at the nodes is shown in the headers of the succeeding boxes. In this case, the

first split is done asking is aTa = 9 or is aTa = 1? For each setting of the variable, one

must follow the respective branch and read the predicted outcome with the according

probability in the boxes. For example, at node 1 the data set is split in half. Out of

800 counts, 400 have aTa set to 9. In this subset, the probability of a kill is 0.72. The

next split is caused by the variable rA.

Where the lines end, we find the so-called leaves. Leaves also represent potential

further nodes. For a discussion of the tree, nodes and leaves are numbered layer-wise

(top down, from left to right)

73

Figure 18. Classification tree model

As it turns out, aTa is the “strongest” variable. It partitions the data set in half.

On the second level, we find in both branches rA to be the most influential variable.

Theoretically, all three variables could be found here. Therefore, it is clear that the

2

1

3

4

5

6

9

8

14

13

12

11

7

74

ranking of the variables is aTa, rA, and then cTf. On the second layer, we also find the

first leave. Node 7 shows the case where aTa is low and rA is high. In such cases, the

predicted response is 0, meaning no kill. We recall that scenarios S2 and S6 clearly

prove this prediction. On this leaf, we have an accuracy of 100%.

On the third level, we can study the effects of the variable cTf. The leaves at

nodes number 8 and 9 also have good accuracy. In both cases, aTa is high and rA is low.

No matter whether cTf is high or low, the model predicts the outcome to be a kill. These

leaves represent scenarios S3 and S7. We find the prediction of node 8 (cTf high),

representing scenario S7, to also be 100% accurate. On the other hand, node 9 (cTf low),

representing scenario S3, has a misclassification rate of 24%. The tree model predicts all

runs to end with a kill, however, only 76 runs actually did.

Furthermore, node 12, representing scenario S5, is very accurate. Out of

100 predicted kills, 100% actually occurred. Node 13, representing scenario S1, turns out

to have a misclassification rate of 11%, since the prediction is 0 and the actual kill rate is

11 kills out of 100 runs.

The greatest misclassification rates are found in leaves 10 and 11, which represent

scenarios S4 and S8. Both have in common that aTa and rA are set to high. If cTf is low,

the tree model predicts a kill with an accuracy of only 66%. If cTf is high, no kill is

predicted while 45 kills out of 100 runs actually occurred.

As a summary, Figure 19 provides an overview on the tree model’s validity. Out

of 800 data points, the model predicts 344 + 342 = 686 correctly. That makes a total

misclassification rate of 14%.

Figure 19. Summary statistics of the classification tree model

> table(predict(tree.model, data.logist, type = "class"), data.logist$binary)
 0 1
0 344 56
1 58 342

75

3. Regression Model on Measures of Effectiveness (MOEs)

So far, we have analyzed the complete output data. From Table 3, we find that,

out of 800 data points, only 398 ended up with a kill. Since we are interested in a

mathematical relationship between the input variables and the MOE we need to extract

those points that provide a value for the timeToFirstKill. Using this extracted data set of

398 points, a regression model will be built under the premise “given a kill.”

Furthermore, the extracted data set, like the one we used for the classification tree

model, needs one more column. This column will contain the dependent variable, which

is the MOE (timeToFirstKill – timeToFirstDetection). Having prepared the data

accordingly, we can use S-Plus to build a regression model. The dependent variable is

the MOE, the independent variables are the 398 cases in which the three input variables

resulted in a kill (see Table 4).

At first, we start out with a linear model without interaction terms. Figure 20

provides a summary output of the linear regression model without interaction terms. We

learn from the P-values that we have statistical significance for the intercept and the

variables aTa and rA. However, the P-value of cTf is too high for it to be statistically

significant. Also, the R-squared value (0.1489) is small, which means that there are

significant deviances between the regression model and the output data.

 > summary(linear.model)

Call: lm(formula = fK.fD ~ ., data = data.lm)
Residuals:
 Min 1Q Median 3Q Max
 -44.41 -11.44 0.6379 8.603 71.76

Coefficients:
 Value Std. Error t value Pr(>|t|)
 (Intercept) 40.2202 3.1909 12.6047 0.0000
 CloseToFriendly 0.3536 0.2749 1.2861 0.1992
AffinityToAction 1.1761 0.3115 3.7757 0.0002
 RiskAversion 1.6777 0.3011 5.5722 0.0000

Residual standard error: 19.65 on 394 degrees of freedom
Multiple R-Squared: 0.1489
F-statistic: 22.98 on 3 and 394 degrees of freedom, the p-value is 1e-013

Correlation of Coefficients:
 (Intercept) CloseToFriendly AffinityToAction
 CloseToFriendly -0.7498
AffinityToAction -0.7125 0.2937

Figure 20. Summary statistics linear regression model on the main effects

76

Nonetheless, it is worth paying attention to the main effects, e.g., the coefficients

to the input variables. Like in the classification tree model, cTf plays a minor role

compared to the other two variables. In contrast, rA has a stronger effect on the outcome

than aTa. The great surprise, however, is that the coefficients of all three variables are

positive. Intuitively, one would think that an increase in aTa would decrease the

timeToFirstKill. Of course, these are for only the cases where a kill actually occurred.

In order to improve a linear regression model, S-Plus provides in its Mass library

a function called stepAIC. This function adds and drops interaction terms in a stepwise

approach in order to better fit the model.

Figure 21 provides the summary output of the linear regression model obtained

using stepAIC. Obviously, the stepAIC function added a single interaction term

(aTa:rA). We observe that all P-values are very small. Furthermore, R-squared has more

than doubled to 0.3443.

Figure 21. Summary statistics of the linear regression model with interaction term

> summary(linearAIC)

Call: lm(formula = fK.fD ~ CloseToFriendly + AffinityToAction + RiskAversion +

CloseToFriendly:
 RiskAversion, data = data.lm)
Residuals:
 Min 1Q Median 3Q Max
 -49.57 -5.334 -0.3359 4.819 80.2

Coefficients:
 Value Std. Error t value Pr(>|t|)
 (Intercept) 21.1282 3.3130 6.3773 0.0000
 CloseToFriendly 2.9022 0.3374 8.6019 0.0000
 AffinityToAction 1.7936 0.2796 6.4145 0.0000
 RiskAversion 4.9180 0.3996 12.3080 0.0000
CloseToFriendly:RiskAversion -0.6924 0.0640 -10.8223 0.0000

Residual standard error: 17.27 on 393 degrees of freedom
Multiple R-Squared: 0.3443
F-statistic: 51.59 on 4 and 393 degrees of freedom, the p-value is 0

Correlation of Coefficients:
 (Intercept) CloseToFriendly AffinityToAction RiskAversion
 CloseToFriendly -0.8261
 AffinityToAction -0.6990 0.3483
 RiskAversion -0.4932 0.5935 -0.0558
CloseToFriendly:RiskAversion 0.5325 -0.6980 -0.2041 -0.7493

77

Looking at the coefficients, we find the intercept to have decreased by a factor of

two. All main effects are still positive. The variable rA still has the greatest impact on

the outcome. The variable aTa has become the least influential one. Even the variable

cTf has a greater effect on the timeToFirstKill.

The new term that caused the improvements of the P-values and R-squared is the

interaction term. Its coefficient is negative, but it is significantly smaller than the two

main effects. Thus, increasing either aTa or rA results in a limited increase in

the outcome.

To sum up, the linear regression model is anything but intuitive. Given that there

is a kill, the smaller all three variables are, the sooner the kill occurs. For rA, the positive

sign and the largest value of the coefficient is no big surprise. One would think that

increasing the rA of all agents will delay the time until the first kill. Likewise, for cTf: if

all agents stay closely in their group, shootings may occur later because panic reactions,

as one of the reasons for shootings, are limited. The big surprise, however, is that, given

there is a kill, the greater the agent’s aTa is, the later it is going to occur. No intuitive

explanation to this fact has been found.

At this point, the author points out one more time that this result may be a result

of the fact that the regression model is built on a subset of the whole output data. We use

only 398 out of 800 data points that we generated to build this model, since we can only

use those points where a kill actually occurred. Furthermore, certain combinations of the

input variables are not represented in the regression model. The combinations of

scenarios S2 and S6 (aTa low, rA high) did not add a single data point to the model. The

reader may recall that both scenarios ended up with no kills at all, not even a shot, in

100 runs each. Finally, the settings of the input factors were relatively extreme (1.0 for

the low and 9.0 for the high setting) with respect to the range of the model’s variables

(from 0.0 through 10.0). It may be interesting for future research to revisit this model

again using input settings that are not so extreme.

Further research, particularly an analysis of all personality factors, is necessary to

gain more insight into this phenomenon.

78

THIS PAGE INTENTIONALLY LEFT BLANK

79

IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The purpose of this thesis was to create an upgradeable agent-based simulation

tool that allows research on specific situations of peacekeeping missions. The

architecture of the computer program was to incorporate a high level of upgradeability.

ABS and DES, as two different simulation concepts, should be brought together and

combined in a simulation model. Furthermore, it was required to make the model data-

farmable. Nonetheless, an optional animation that allows the study of the agents’

behavior in single runs was desirable. With respect to the random number management,

the model was required to allow multi-runs, many replications, and the results need to

be reproducible.

As it turns out, Simkit is capable of serving as a basis for ABS. Building an ABS

on a Simkit basis provides a series of advantages. Using Simkit, the model will

automatically follow a discrete-event approach. Listener patterns and loosely coupled

components guarantee that the access to information (of other agents) is limited to a

degree that represents the real world. The use of Factories, among other Simkit

approaches, makes the simulation model stable and robust. An animation that allows the

observation of the agents’ motions is added by Simkit for free.

Chapter III of this thesis provides an exemplary analysis. Above all, this part is

meant to demonstrate that the model actually is data-farmable. Out of the almost

unlimited amount of different input combinations, an analysis of personality factors was

carried out. Out of the seven personality factors (including the training level) that

characterize an agent, three were picked as input variables: CloseToFriendly,

AffinityToAction, and RiskAversion. A two-level full factorial design was chosen and

each combination of input factors was run 100 times. As for the output, the primary

MOE was defined as timeToFirstKill – timeToFirstDetection. By subtracting the second

term from the first, any effects of the input factors on the speed of motion of the agents is

eliminated. Therefore, we really consider the time of the escalation of the situation. The

80

stopwatch is started as soon as the first blue agent detects a red agent or vice versa and is

clicked when the first agent gets killed.

The model was able to run each of the scenarios, represented in a single XML

input file, successively. It carried out 100 runs on each scenario and created a text file for

the output of each scenario. It turned out that on an average home PC (Pentium 4,

2.66 GHz, 512 MB) the execution of 100 runs of such a scenario (8 blue agents,

24 red agents) lasted about 30 minutes. Further research is necessary to gain more

experience in the computational effort when the number of agents is increased.

A first look at the output data revealed that a kill does not occur in every run. In

fact, there are two scenarios (e.g., two different input combinations) that did not generate

a kill at all. Therefore, it was impossible to apply linear regression to the complete output

data for the time to first kill measure.

Applying classification tree techniques allowed answering the question: Which

one of the three input factors has the greatest effect on the occurrence of kills? As it

turned out in this scenario, it is AffintyToAction. The second most influential variable is

RiskAversion, followed by CloseToFriendly. Furthermore, the tree model also brought

forth that the combination AffinityToAction low and RiskAversion high results in no

kills at all. This suggestion of the model is in absolute accordance with the output data.

Strictly speaking this would be a very desirable situation for peacekeeping missions. One

could think that through the military training and preparations for a peacekeeping

mission, the soldiers should take on a very passive and risk-averting attitude and

everything would be perfect. The answer to this was given by the model itself. Taking

advantage of the animation and watching one of the runs with this setting showed that the

red agents finally broke through and successfully made their way to their objective. Of

course, in some peacekeeping missions, this tactical failure may be better than a kill,

which could, in a strategic sense, result in overall mission failure.

On the other hand, if RiskAversion is low and AffinityToAction is high, no matter

what the setting of CloseToFriendly is, the model always suggests a kill. Compared to

the output data we have a misclassification rate of 12% in this situation. Anyway, the

attitude of soldiers represented by this input setting is definitely unfortunate for

81

peacekeeping missions. The group of peacekeepers may be successful in keeping the

crowd of demonstrators from reaching their objective; however, only at the price of

people being killed.

The last portion of the analysis part dealt with a subset of the whole output data

set. In order to build a linear regression model, only those data points that included a

timeToFirstKill were useful. The question here was: Given a kill, what is the influence

of the input factors on the MOE? The linear regression model suggests that

RiskAversion is the most influential input factor, followed by CloseToFriendly and

AffinityToAction. All factors are positive, meaning that increasing each one of them

results in a greater time to first kill. In other words, the model suggests that, given a kill,

increasing the AffinityToAction of all agents’ results in a situation that escalates slower.

This is a surprise. There is no intuitive explanation to this finding. Further research

needs to be undertaken in order to gain more insight into this phenomenon.

Such surprises that cannot be immediately explained are not new in the world of

ABS. As a matter of fact, the purpose of ABS is to generate questions rather than

answers. John Holland, a founder of CAS theory, said:

I just love these things where the situation unfolds and I say, ‘Gee whiz!
Did that really come from these assumptions!?’ Because if I do it right, if
the underlying rules of evolution of the themes are in control and not me,
then I’ll be surprised. And if I’m not surprised, then I am not very happy,
because I know I’ve built everything in from the start. [Waldrop, 1992]

B. RECOMMENDATIONS FOR FURTHER RESEARCH

Throughout the text, we have seen several suggestions and recommendations for

further work. This chapter provides a summary on these recommendations, as this thesis

could be extended in two different directions:

1) Upgrades and improvements to the simulation model.

2) Further analysis using the existing model.

Both ways can be explored independently of one another; however, it is also

possible to carry out further research with a combination of both. For the first way,

thorough programming skills and a good understanding of DES using Simkit is

82

necessary. The second way also requires programming skills, but only to a very basic

level. The main requirement here is a concern for statistical techniques and some

knowledge in state-of-the-art designs of experiment.

1. Upgrades on the Model

Upgradeability was a key design requirement. This means that the model is

capable of dealing with future PKO challenges. The upgradeable structure of the

software is described in detail in Section II.B.4. Recommendations for further upgrades

are given in Sections II.C and II.D. As there is no limit to one’s creativity, this paragraph

provides a brief list of further upgrades that the author would recommend starting with.

As it comes to an analysis of specific situations, the model’s animation is limited

to the movement processes. Shots are not yet displayed. Killed and wounded agents

cannot be differentiated from healthy agents. It may be desirable to upgrade the

animation at first. Since the animation used in this thesis is purely Simkit-based, the

author recommends getting in touch with Professor Buss, NPS, as soon as an upgrade to

the existing animation is intended.

Currently, the AgentSensor is based on the cookie cutter principle. A cookie

cutter sensor detects all other agents with range with 100% accuracy. It may be

interesting to test various other sensing mechanisms (and their effects on the outcome).

A good start may be to add probabilistic sensing. The probability of detection may be

high when the other agent is in front and low if it is behind the agent.

Furthermore, fuzziness could be added to the information flow within an agent.

As shown in Figure 6 (Layer model of the BasicAgent) any piece of information that is

processed in the Agent level must be passed through the InnerEnvironment level. Instead

of just passing it through, randomness could be added.

The BasicAgent is already prepared to incorporate a History. It could be

interesting to introduce a history mechanism. For example, whenever an agent has

already tried to take a certain action to reach a goal, yet was not successful, a potential

History implementation could tell him that he should try to take a different action. In this

respect, an extended set of tickets (actions) could be associated to each goal.

83

In order to study scenarios in urban terrain better, buildings and other sorts of

infrastructure may be introduced. Care must be taken here: in order to model

infrastructure adequately, the whole sensing mechanism must be equipped with a

line-of-sight algorithm. Such algorithms usually consume a huge amount of computing

power, i.e., they slow the simulation down. Furthermore, the author would recommend

introducing a PathMoverManager26 for the agents, so that they can nicely move around

buildings, cross bridges, etc.

For potential analysis of the effects of leadership, a mechanism of giving and

receiving orders could be introduced. As explained in Section II.C.3, adding

doGiveOrder(Order) and doReceiveOrder(Order) methods to the agents would be a start

to this enhancement.

Last, but not least, the algorithm that evaluates hits, wounds and kills may be

modeled in a more sophisticated way. Currently, random number draws determine the

effects of shots. One approach would be a 2-D shape of a person on an underlying

coordinate system. Hits in predefined areas of this shape either lead to a miss, a wound,

or a kill event.

The reader may get an impression that there is no limit to one’s creativity.

However, an ABM may not necessarily become better by continuously refining it. The

complexity of the aggregated behavior of an ABM does not depend on highly complex

agent designs. From a certain degree on, the complexity of the system as a whole, as well

as its potential outcome, may even decrease as the fidelity of the agents is

further increased.

The model, as it is, is capable of simulating a PKO scenario as the situation

escalates in a reasonable way. Without any further upgrades on the software, there is a

variety of further research possible.

26 Simkit already provides a variety of PathMoverManagers.

84

2. Recommendations on Further Analysis

The exemplary analysis provided in Chapter III of this thesis was meant to prove

that the model is data-farmable and to give some insight into the relationship of the

personality factors and the outcome of the simulation.

A possible starting point to further research could be an analysis of all personality

factors (including training). For a thorough exploration, it is highly recommended to not

limit the settings of these input factors to only two levels. However, a three-level,

full factorial design would mean 37 = 2187 scenarios. Therefore, further statistical

research needs to include modern experimental designs, such as Latin Hypercubes.

It may also be interesting to study the effect of variable force sizes. This thesis

was done on a single PC. If high performance computing power is available, such as the

Maui High Performance Computing Center (MHPCC) provides, an exploration of

variable force ratios may generate surprising insights.

While the exemplary analysis is based on the assumption of homogeneous groups

of agents, the author would be interested in the effect of heterogeneous groups of agents.

The simulation model already includes a mechanism to generate personality factors that

are based on a normal distribution.

Furthermore, the model could serve as a tool to explore different sorts of tactics.

For example, given a group of demonstrators, the peacekeepers may encounter them in a

single group or split into two or more smaller groups.

So far, the reader may have an idea of a possible first extension to the existing

analysis. Again, there is no limitation to one’s creativity. As time allows, the author is

more than happy to provide assistance to those who are willing to exploit this model. My

contact information can be found in Appendix C of this thesis.

85

APPENDIX A. GERMAN TO ENGLISH REFERENCE

Bundeswehr German Federal Armed Forces

Verteidigungspolitiche Richtlinien Defence Policy Guidelines

Konzeption der Bundeswehr Bundeswehr Concept

Nationale Volksarmee National People’s Army

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

APPENDIX B. SIMULATION OUTPUT

inputFileName[i] = ../scenarios/analysis_ff_01
fD fS fK

16.529 50.306 >>>>> run number 1 is done!!! <<<<<
20.834 50.26 >>>>> run number 2 is done!!! <<<<<
20.788 47.196 >>>>> run number 3 is done!!! <<<<<
20.573 46.318 >>>>> run number 4 is done!!! <<<<<
19.960 50.207 >>>>> run number 5 is done!!! <<<<<
20.741 49.957 >>>>> run number 6 is done!!! <<<<<
20.839 50.056 >>>>> run number 7 is done!!! <<<<<
20.552 50.839 >>>>> run number 8 is done!!! <<<<<
21.169 51.491 >>>>> run number 9 is done!!! <<<<<
20.663 46.831 >>>>> run number 10 is done!!! <<<<<
20.001 50.702 >>>>> run number 11 is done!!! <<<<<
21.245 50.494 >>>>> run number 12 is done!!! <<<<<
20.353 46.737 >>>>> run number 13 is done!!! <<<<<
20.519 46.462 >>>>> run number 14 is done!!! <<<<<
20.003 50.488 >>>>> run number 15 is done!!! <<<<<
19.132 49.705 >>>>> run number 16 is done!!! <<<<<
20.864 50.437 52.125 >>>>> run number 17 is done!!! <<<<<
19.979 50.511 >>>>> run number 18 is done!!! <<<<<
20.862 51.413 53.65 >>>>> run number 19 is done!!! <<<<<
16.088 46.617 >>>>> run number 20 is done!!! <<<<<
15.865 50.485 >>>>> run number 21 is done!!! <<<<<
16.646 50.885 52.797 >>>>> run number 22 is done!!! <<<<<
20.550 50.478 >>>>> run number 23 is done!!! <<<<<
20.534 50.891 >>>>> run number 24 is done!!! <<<<<
20.890 46.456 >>>>> run number 25 is done!!! <<<<<
20.805 50.613 >>>>> run number 26 is done!!! <<<<<
20.282 50.406 >>>>> run number 27 is done!!! <<<<<
20.016 50.47 >>>>> run number 28 is done!!! <<<<<
20.001 50.231 >>>>> run number 29 is done!!! <<<<<
16.039 50.37 >>>>> run number 30 is done!!! <<<<<
20.945 50.536 >>>>> run number 31 is done!!! <<<<<
20.931 47.078 >>>>> run number 32 is done!!! <<<<<
20.791 50.288 51.882 >>>>> run number 33 is done!!! <<<<<
20.343 50.447 52.397 >>>>> run number 34 is done!!! <<<<<
19.912 50.595 >>>>> run number 35 is done!!! <<<<<
20.886 50.427 >>>>> run number 36 is done!!! <<<<<
20.595 46.79 >>>>> run number 37 is done!!! <<<<<
18.562 51.471 >>>>> run number 38 is done!!! <<<<<
20.077 50.434 52.036 >>>>> run number 39 is done!!! <<<<<
20.768 50.381 >>>>> run number 40 is done!!! <<<<<
20.435 46.719 >>>>> run number 41 is done!!! <<<<<
20.771 46.929 >>>>> run number 42 is done!!! <<<<<
21.008 46.502 >>>>> run number 43 is done!!! <<<<<
20.798 47.003 >>>>> run number 44 is done!!! <<<<<
20.783 50.752 >>>>> run number 45 is done!!! <<<<<
20.787 50.521 52.921 >>>>> run number 46 is done!!! <<<<<
16.998 44.66 >>>>> run number 47 is done!!! <<<<<
19.139 50.812 >>>>> run number 48 is done!!! <<<<<

88

16.859 50.277 >>>>> run number 49 is done!!! <<<<<
20.017 50.508 >>>>> run number 50 is done!!! <<<<<
19.876 50.151 >>>>> run number 51 is done!!! <<<<<
20.042 50.282 >>>>> run number 52 is done!!! <<<<<
20.877 49.804 >>>>> run number 53 is done!!! <<<<<
16.568 50.796 52.692 >>>>> run number 54 is done!!! <<<<<
20.916 50.423 >>>>> run number 55 is done!!! <<<<<
20.026 50.332 >>>>> run number 56 is done!!! <<<<<
20.385 49.817 >>>>> run number 57 is done!!! <<<<<
20.776 50.114 51.792 >>>>> run number 58 is done!!! <<<<<
15.996 50.973 >>>>> run number 59 is done!!! <<<<<
20.884 47.088 >>>>> run number 60 is done!!! <<<<<
20.675 43.273 >>>>> run number 61 is done!!! <<<<<
16.074 50.702 >>>>> run number 62 is done!!! <<<<<
20.833 49.949 >>>>> run number 63 is done!!! <<<<<
16.598 50.615 52.56 >>>>> run number 64 is done!!! <<<<<
20.751 46.697 >>>>> run number 65 is done!!! <<<<<
20.815 46.588 >>>>> run number 66 is done!!! <<<<<
19.134 51.041 >>>>> run number 67 is done!!! <<<<<
20.317 46.274 >>>>> run number 68 is done!!! <<<<<
20.486 44.186 >>>>> run number 69 is done!!! <<<<<
20.806 50.654 >>>>> run number 70 is done!!! <<<<<
20.326 51.142 >>>>> run number 71 is done!!! <<<<<
16.839 46.901 >>>>> run number 72 is done!!! <<<<<
20.740 50.637 >>>>> run number 73 is done!!! <<<<<
16.571 50.398 >>>>> run number 74 is done!!! <<<<<
19.949 50.409 >>>>> run number 75 is done!!! <<<<<
20.784 50.693 >>>>> run number 76 is done!!! <<<<<
20.977 50.237 >>>>> run number 77 is done!!! <<<<<
16.146 52.085 >>>>> run number 78 is done!!! <<<<<
20.928 44.41 >>>>> run number 79 is done!!! <<<<<
20.325 49.949 >>>>> run number 80 is done!!! <<<<<
20.020 50.445 >>>>> run number 81 is done!!! <<<<<
19.112 46.935 >>>>> run number 82 is done!!! <<<<<
16.592 50.278 >>>>> run number 83 is done!!! <<<<<
20.925 50.966 >>>>> run number 84 is done!!! <<<<<
20.921 49.901 >>>>> run number 85 is done!!! <<<<<
20.604 50.463 >>>>> run number 86 is done!!! <<<<<
20.748 50.361 >>>>> run number 87 is done!!! <<<<<
18.766 50.848 >>>>> run number 88 is done!!! <<<<<
20.893 50.454 >>>>> run number 89 is done!!! <<<<<
20.736 49.665 >>>>> run number 90 is done!!! <<<<<
16.841 50.331 52.407 >>>>> run number 91 is done!!! <<<<<
20.905 51.199 >>>>> run number 92 is done!!! <<<<<
17.025 50.054 >>>>> run number 93 is done!!! <<<<<
22.869 50.284 >>>>> run number 94 is done!!! <<<<<
20.832 46.86 >>>>> run number 95 is done!!! <<<<<
20.783 44.311 >>>>> run number 96 is done!!! <<<<<
16.032 46.463 >>>>> run number 97 is done!!! <<<<<
20.729 46.862 >>>>> run number 98 is done!!! <<<<<
16.088 50.287 >>>>> run number 99 is done!!! <<<<<
20.013 50.118 >>>>> run number 100 is done!!! <<<<<

89

inputFileName[i] = ../scenarios/analysis_ff_02
fD

11.539 >>>>> run number 1 is done!!! <<<<<
12.019 >>>>> run number 2 is done!!! <<<<<
11.665 >>>>> run number 3 is done!!! <<<<<
11.733 >>>>> run number 4 is done!!! <<<<<
11.729 >>>>> run number 5 is done!!! <<<<<
11.774 >>>>> run number 6 is done!!! <<<<<
11.435 >>>>> run number 7 is done!!! <<<<<
11.535 >>>>> run number 8 is done!!! <<<<<
11.537 >>>>> run number 9 is done!!! <<<<<
11.610 >>>>> run number 10 is done!!! <<<<<
11.552 >>>>> run number 11 is done!!! <<<<<
11.506 >>>>> run number 12 is done!!! <<<<<
11.471 >>>>> run number 13 is done!!! <<<<<
11.931 >>>>> run number 14 is done!!! <<<<<
11.597 >>>>> run number 15 is done!!! <<<<<
11.652 >>>>> run number 16 is done!!! <<<<<
11.730 >>>>> run number 17 is done!!! <<<<<
11.681 >>>>> run number 18 is done!!! <<<<<
11.491 >>>>> run number 19 is done!!! <<<<<
11.432 >>>>> run number 20 is done!!! <<<<<
11.477 >>>>> run number 21 is done!!! <<<<<
11.484 >>>>> run number 22 is done!!! <<<<<
11.468 >>>>> run number 23 is done!!! <<<<<
11.665 >>>>> run number 24 is done!!! <<<<<
11.445 >>>>> run number 25 is done!!! <<<<<
11.538 >>>>> run number 26 is done!!! <<<<<
11.505 >>>>> run number 27 is done!!! <<<<<
11.859 >>>>> run number 28 is done!!! <<<<<
11.496 >>>>> run number 29 is done!!! <<<<<
11.626 >>>>> run number 30 is done!!! <<<<<
11.896 >>>>> run number 31 is done!!! <<<<<
11.694 >>>>> run number 32 is done!!! <<<<<
11.599 >>>>> run number 33 is done!!! <<<<<
11.432 >>>>> run number 34 is done!!! <<<<<
11.606 >>>>> run number 35 is done!!! <<<<<
11.896 >>>>> run number 36 is done!!! <<<<<
11.658 >>>>> run number 37 is done!!! <<<<<
11.527 >>>>> run number 38 is done!!! <<<<<
11.725 >>>>> run number 39 is done!!! <<<<<
11.572 >>>>> run number 40 is done!!! <<<<<
11.717 >>>>> run number 41 is done!!! <<<<<
11.728 >>>>> run number 42 is done!!! <<<<<
11.559 >>>>> run number 43 is done!!! <<<<<
11.940 >>>>> run number 44 is done!!! <<<<<
11.427 >>>>> run number 45 is done!!! <<<<<
11.720 >>>>> run number 46 is done!!! <<<<<
11.643 >>>>> run number 47 is done!!! <<<<<
11.908 >>>>> run number 48 is done!!! <<<<<
11.991 >>>>> run number 49 is done!!! <<<<<
12.203 >>>>> run number 50 is done!!! <<<<<
11.822 >>>>> run number 51 is done!!! <<<<<

90

11.854 >>>>> run number 52 is done!!! <<<<<
11.442 >>>>> run number 53 is done!!! <<<<<
11.726 >>>>> run number 54 is done!!! <<<<<
11.552 >>>>> run number 55 is done!!! <<<<<
11.566 >>>>> run number 56 is done!!! <<<<<
11.581 >>>>> run number 57 is done!!! <<<<<
11.503 >>>>> run number 58 is done!!! <<<<<
11.523 >>>>> run number 59 is done!!! <<<<<
11.456 >>>>> run number 60 is done!!! <<<<<
11.532 >>>>> run number 61 is done!!! <<<<<
11.469 >>>>> run number 62 is done!!! <<<<<
11.627 >>>>> run number 63 is done!!! <<<<<
11.537 >>>>> run number 64 is done!!! <<<<<
11.812 >>>>> run number 65 is done!!! <<<<<
11.516 >>>>> run number 66 is done!!! <<<<<
11.808 >>>>> run number 67 is done!!! <<<<<
11.466 >>>>> run number 68 is done!!! <<<<<
11.653 >>>>> run number 69 is done!!! <<<<<
11.614 >>>>> run number 70 is done!!! <<<<<
11.648 >>>>> run number 71 is done!!! <<<<<
11.500 >>>>> run number 72 is done!!! <<<<<
11.776 >>>>> run number 73 is done!!! <<<<<
11.454 >>>>> run number 74 is done!!! <<<<<
11.527 >>>>> run number 75 is done!!! <<<<<
11.521 >>>>> run number 76 is done!!! <<<<<
11.954 >>>>> run number 77 is done!!! <<<<<
11.475 >>>>> run number 78 is done!!! <<<<<
11.428 >>>>> run number 79 is done!!! <<<<<
11.424 >>>>> run number 80 is done!!! <<<<<
11.502 >>>>> run number 81 is done!!! <<<<<
11.662 >>>>> run number 82 is done!!! <<<<<
11.487 >>>>> run number 83 is done!!! <<<<<
11.454 >>>>> run number 84 is done!!! <<<<<
11.604 >>>>> run number 85 is done!!! <<<<<
11.745 >>>>> run number 86 is done!!! <<<<<
11.471 >>>>> run number 87 is done!!! <<<<<
11.595 >>>>> run number 88 is done!!! <<<<<
11.632 >>>>> run number 89 is done!!! <<<<<
11.664 >>>>> run number 90 is done!!! <<<<<
11.589 >>>>> run number 91 is done!!! <<<<<
11.455 >>>>> run number 92 is done!!! <<<<<
11.808 >>>>> run number 93 is done!!! <<<<<
11.523 >>>>> run number 94 is done!!! <<<<<
11.970 >>>>> run number 95 is done!!! <<<<<
11.582 >>>>> run number 96 is done!!! <<<<<
11.595 >>>>> run number 97 is done!!! <<<<<
11.676 >>>>> run number 98 is done!!! <<<<<
11.594 >>>>> run number 99 is done!!! <<<<<
11.520 >>>>> run number 100 is done!!! <<<<<

inputFileName[i] = ../scenarios/analysis_ff_03
fD fS fK

91

15.746 23.377 70.406 >>>>> run number 1 is done!!! <<<<<
15.633 23.275 >>>>> run number 2 is done!!! <<<<<
15.763 23.05 79.56 >>>>> run number 3 is done!!! <<<<<
15.660 22.994 >>>>> run number 4 is done!!! <<<<<
15.669 23.585 37.906 >>>>> run number 5 is done!!! <<<<<
15.803 22.913 >>>>> run number 6 is done!!! <<<<<
15.748 23.531 >>>>> run number 7 is done!!! <<<<<
15.631 23.283 81.403 >>>>> run number 8 is done!!! <<<<<
15.633 23.666 >>>>> run number 9 is done!!! <<<<<
15.635 23.547 101.22 >>>>> run number 10 is done!!! <<<<<
15.641 23.392 140.235 >>>>> run number 11 is done!!! <<<<<
15.742 23.205 88.196 >>>>> run number 12 is done!!! <<<<<
15.716 23.557 53.473 >>>>> run number 13 is done!!! <<<<<
15.729 23.019 26.157 >>>>> run number 14 is done!!! <<<<<
15.653 23.487 82.418 >>>>> run number 15 is done!!! <<<<<
15.982 22.999 >>>>> run number 16 is done!!! <<<<<
15.876 23.377 >>>>> run number 17 is done!!! <<<<<
15.787 23.349 68.692 >>>>> run number 18 is done!!! <<<<<
15.678 23.286 >>>>> run number 19 is done!!! <<<<<
15.687 23.268 51.882 >>>>> run number 20 is done!!! <<<<<
15.671 23.508 65.834 >>>>> run number 21 is done!!! <<<<<
15.689 23.343 25.502 >>>>> run number 22 is done!!! <<<<<
15.744 23.227 64.472 >>>>> run number 23 is done!!! <<<<<
15.659 23.571 52.219 >>>>> run number 24 is done!!! <<<<<
15.920 23.226 79.45 >>>>> run number 25 is done!!! <<<<<
15.646 23.564 67.094 >>>>> run number 26 is done!!! <<<<<
15.646 23.578 61.121 >>>>> run number 27 is done!!! <<<<<
15.630 22.872 78.229 >>>>> run number 28 is done!!! <<<<<
15.649 23.101 57.35 >>>>> run number 29 is done!!! <<<<<
15.656 23.423 58.523 >>>>> run number 30 is done!!! <<<<<
15.657 23.708 35.076 >>>>> run number 31 is done!!! <<<<<
15.703 23.004 82.533 >>>>> run number 32 is done!!! <<<<<
15.671 23.514 >>>>> run number 33 is done!!! <<<<<
15.662 23.244 >>>>> run number 34 is done!!! <<<<<
15.679 23.287 56.403 >>>>> run number 35 is done!!! <<<<<
15.653 23.445 27.049 >>>>> run number 36 is done!!! <<<<<
15.657 23.565 76.593 >>>>> run number 37 is done!!! <<<<<
15.791 22.916 24.221 >>>>> run number 38 is done!!! <<<<<
15.666 23.206 54.154 >>>>> run number 39 is done!!! <<<<<
15.647 23.454 36.478 >>>>> run number 40 is done!!! <<<<<
15.659 23.109 72.276 >>>>> run number 41 is done!!! <<<<<
15.692 23.005 62.989 >>>>> run number 42 is done!!! <<<<<
15.675 22.935 >>>>> run number 43 is done!!! <<<<<
15.749 23.179 >>>>> run number 44 is done!!! <<<<<
15.684 23.459 >>>>> run number 45 is done!!! <<<<<
15.756 23.539 41.183 >>>>> run number 46 is done!!! <<<<<
15.676 23.527 62.67 >>>>> run number 47 is done!!! <<<<<
15.640 22.975 64.018 >>>>> run number 48 is done!!! <<<<<
15.730 23.224 83.217 >>>>> run number 49 is done!!! <<<<<
15.667 23.176 25.208 >>>>> run number 50 is done!!! <<<<<
15.664 23.525 >>>>> run number 51 is done!!! <<<<<
15.731 23.373 76.198 >>>>> run number 52 is done!!! <<<<<
15.644 23.455 82.396 >>>>> run number 53 is done!!! <<<<<
15.686 23.284 24.798 >>>>> run number 54 is done!!! <<<<<

92

15.648 23.299 74.575 >>>>> run number 55 is done!!! <<<<<
15.689 23.508 25.356 >>>>> run number 56 is done!!! <<<<<
15.631 23.354 27.12 >>>>> run number 57 is done!!! <<<<<
15.647 23.243 76.473 >>>>> run number 58 is done!!! <<<<<
15.636 23.072 >>>>> run number 59 is done!!! <<<<<
15.694 23.14 39.704 >>>>> run number 60 is done!!! <<<<<
15.938 23.102 71.731 >>>>> run number 61 is done!!! <<<<<
15.757 23.566 >>>>> run number 62 is done!!! <<<<<
15.763 23.538 >>>>> run number 63 is done!!! <<<<<
15.644 23.507 84.08 >>>>> run number 64 is done!!! <<<<<
15.689 23.519 52.867 >>>>> run number 65 is done!!! <<<<<
15.670 23.494 82.163 >>>>> run number 66 is done!!! <<<<<
15.633 23.071 79.771 >>>>> run number 67 is done!!! <<<<<
15.693 22.939 39.473 >>>>> run number 68 is done!!! <<<<<
15.638 23.548 53.736 >>>>> run number 69 is done!!! <<<<<
15.714 23.331 43.166 >>>>> run number 70 is done!!! <<<<<
15.639 23.31 >>>>> run number 71 is done!!! <<<<<
15.775 23.523 >>>>> run number 72 is done!!! <<<<<
15.674 23.395 >>>>> run number 73 is done!!! <<<<<
15.629 23.109 >>>>> run number 74 is done!!! <<<<<
15.669 23.259 59.608 >>>>> run number 75 is done!!! <<<<<
15.642 23.668 33.23 >>>>> run number 76 is done!!! <<<<<
15.723 23.143 33.834 >>>>> run number 77 is done!!! <<<<<
15.653 22.829 88.522 >>>>> run number 78 is done!!! <<<<<
15.710 22.938 26.129 >>>>> run number 79 is done!!! <<<<<
15.718 23.32 24.964 >>>>> run number 80 is done!!! <<<<<
15.698 23.405 51.231 >>>>> run number 81 is done!!! <<<<<
15.688 23.507 >>>>> run number 82 is done!!! <<<<<
15.685 23.519 38.241 >>>>> run number 83 is done!!! <<<<<
15.694 23.542 37.982 >>>>> run number 84 is done!!! <<<<<
15.657 23.193 >>>>> run number 85 is done!!! <<<<<
15.664 23.62 69.927 >>>>> run number 86 is done!!! <<<<<
15.712 22.99 139.969 >>>>> run number 87 is done!!! <<<<<
15.741 23.591 >>>>> run number 88 is done!!! <<<<<
15.744 23.141 25.156 >>>>> run number 89 is done!!! <<<<<
15.747 22.972 42.56 >>>>> run number 90 is done!!! <<<<<
15.668 23.098 78.298 >>>>> run number 91 is done!!! <<<<<
15.722 23.224 81.03 >>>>> run number 92 is done!!! <<<<<
15.633 23.528 79.684 >>>>> run number 93 is done!!! <<<<<
15.787 23.139 41.657 >>>>> run number 94 is done!!! <<<<<
15.635 23.585 71.425 >>>>> run number 95 is done!!! <<<<<
15.784 22.932 47.561 >>>>> run number 96 is done!!! <<<<<
15.715 23.496 67.522 >>>>> run number 97 is done!!! <<<<<
15.658 23.514 78.522 >>>>> run number 98 is done!!! <<<<<
15.753 23.373 41.56 >>>>> run number 99 is done!!! <<<<<
15.650 23.609 43.75 >>>>> run number 100 is done!!! <<<<<

inputFileName[i] = ../scenarios/analysis_ff_04
fD fS fK

11.172 26.554 84.933 >>>>> run number 1 is done!!! <<<<<
11.414 26.196 134.321 >>>>> run number 2 is done!!! <<<<<
11.186 26.16 130.852 >>>>> run number 3 is done!!! <<<<<

93

11.156 26.141 105.557 >>>>> run number 4 is done!!! <<<<<
11.232 25.922 >>>>> run number 5 is done!!! <<<<<
11.630 26.266 >>>>> run number 6 is done!!! <<<<<
11.145 26.37 77.681 >>>>> run number 7 is done!!! <<<<<
11.305 26.462 >>>>> run number 8 is done!!! <<<<<
11.195 26.53 71.278 >>>>> run number 9 is done!!! <<<<<
11.286 26.287 >>>>> run number 10 is done!!! <<<<<
11.142 26.221 131.373 >>>>> run number 11 is done!!! <<<<<
11.145 26.274 81.286 >>>>> run number 12 is done!!! <<<<<
11.169 26.512 93.411 >>>>> run number 13 is done!!! <<<<<
11.130 26.556 >>>>> run number 14 is done!!! <<<<<
11.127 26.039 64.352 >>>>> run number 15 is done!!! <<<<<
11.162 26.253 84.618 >>>>> run number 16 is done!!! <<<<<
11.156 26.372 87.463 >>>>> run number 17 is done!!! <<<<<
11.122 25.969 43.405 >>>>> run number 18 is done!!! <<<<<
11.208 26.554 >>>>> run number 19 is done!!! <<<<<
11.350 26.326 67.033 >>>>> run number 20 is done!!! <<<<<
11.141 26.055 >>>>> run number 21 is done!!! <<<<<
11.166 25.961 >>>>> run number 22 is done!!! <<<<<
11.221 26.634 76.881 >>>>> run number 23 is done!!! <<<<<
11.356 26.55 130.907 >>>>> run number 24 is done!!! <<<<<
11.320 26.162 86.22 >>>>> run number 25 is done!!! <<<<<
11.172 25.926 55.277 >>>>> run number 26 is done!!! <<<<<
11.329 26.17 137.911 >>>>> run number 27 is done!!! <<<<<
11.176 26.512 109.304 >>>>> run number 28 is done!!! <<<<<
11.122 26.038 78.066 >>>>> run number 29 is done!!! <<<<<
11.140 26.236 131.858 >>>>> run number 30 is done!!! <<<<<
11.234 26.54 82.704 >>>>> run number 31 is done!!! <<<<<
11.422 26.044 87.545 >>>>> run number 32 is done!!! <<<<<
11.349 26.567 >>>>> run number 33 is done!!! <<<<<
11.188 26.113 143.141 >>>>> run number 34 is done!!! <<<<<
11.198 26.553 71.483 >>>>> run number 35 is done!!! <<<<<
11.171 26.459 >>>>> run number 36 is done!!! <<<<<
11.242 26.222 40.728 >>>>> run number 37 is done!!! <<<<<
11.247 26.327 58.858 >>>>> run number 38 is done!!! <<<<<
11.378 26.55 82.728 >>>>> run number 39 is done!!! <<<<<
11.174 26.542 64.761 >>>>> run number 40 is done!!! <<<<<
11.138 25.992 146.138 >>>>> run number 41 is done!!! <<<<<
11.140 26.554 >>>>> run number 42 is done!!! <<<<<
11.197 26.568 >>>>> run number 43 is done!!! <<<<<
11.205 26.624 >>>>> run number 44 is done!!! <<<<<
11.229 26.583 135.333 >>>>> run number 45 is done!!! <<<<<
11.198 26.559 88.545 >>>>> run number 46 is done!!! <<<<<
11.385 26.23 58.964 >>>>> run number 47 is done!!! <<<<<
11.509 26.55 >>>>> run number 48 is done!!! <<<<<
11.170 26.575 85.327 >>>>> run number 49 is done!!! <<<<<
11.193 26.362 82.056 >>>>> run number 50 is done!!! <<<<<
11.173 26.306 85.633 >>>>> run number 51 is done!!! <<<<<
11.195 26.568 41.337 >>>>> run number 52 is done!!! <<<<<
11.327 26.568 >>>>> run number 53 is done!!! <<<<<
11.329 26.032 84.616 >>>>> run number 54 is done!!! <<<<<
11.258 26.549 144.616 >>>>> run number 55 is done!!! <<<<<
11.269 26.008 39.906 >>>>> run number 56 is done!!! <<<<<
11.335 26.117 78.312 >>>>> run number 57 is done!!! <<<<<

94

11.310 26.629 61.086 >>>>> run number 58 is done!!! <<<<<
11.292 26.266 129.928 >>>>> run number 59 is done!!! <<<<<
11.188 26.315 >>>>> run number 60 is done!!! <<<<<
11.174 26.142 82.053 >>>>> run number 61 is done!!! <<<<<
11.341 26.558 74.019 >>>>> run number 62 is done!!! <<<<<
11.301 26.144 >>>>> run number 63 is done!!! <<<<<
11.435 26.114 66.879 >>>>> run number 64 is done!!! <<<<<
11.287 26.236 131.412 >>>>> run number 65 is done!!! <<<<<
11.148 26.575 83.733 >>>>> run number 66 is done!!! <<<<<
11.202 26.565 >>>>> run number 67 is done!!! <<<<<
11.275 26.294 >>>>> run number 68 is done!!! <<<<<
11.218 26.163 64.1 >>>>> run number 69 is done!!! <<<<<
11.518 26.335 >>>>> run number 70 is done!!! <<<<<
11.214 26.185 >>>>> run number 71 is done!!! <<<<<
11.178 26.116 >>>>> run number 72 is done!!! <<<<<
11.158 26.596 >>>>> run number 73 is done!!! <<<<<
11.167 26.363 >>>>> run number 74 is done!!! <<<<<
11.133 26.557 93.028 >>>>> run number 75 is done!!! <<<<<
11.464 26.14 127.735 >>>>> run number 76 is done!!! <<<<<
11.313 26.228 79.428 >>>>> run number 77 is done!!! <<<<<
11.188 26.224 >>>>> run number 78 is done!!! <<<<<
11.382 26.584 41.407 >>>>> run number 79 is done!!! <<<<<
11.281 26.579 128.732 >>>>> run number 80 is done!!! <<<<<
11.139 26.55 >>>>> run number 81 is done!!! <<<<<
11.366 26.447 >>>>> run number 82 is done!!! <<<<<
11.395 25.907 83.527 >>>>> run number 83 is done!!! <<<<<
11.230 26.448 47.424 >>>>> run number 84 is done!!! <<<<<
11.182 25.983 >>>>> run number 85 is done!!! <<<<<
11.347 26.46 >>>>> run number 86 is done!!! <<<<<
11.298 26.465 96.928 >>>>> run number 87 is done!!! <<<<<
11.255 26.227 144.021 >>>>> run number 88 is done!!! <<<<<
11.162 25.974 62.498 >>>>> run number 89 is done!!! <<<<<
11.431 25.907 73.102 >>>>> run number 90 is done!!! <<<<<
11.363 26.362 >>>>> run number 91 is done!!! <<<<<
11.152 26.591 85.415 >>>>> run number 92 is done!!! <<<<<
11.330 26.576 >>>>> run number 93 is done!!! <<<<<
11.582 26.575 130.318 >>>>> run number 94 is done!!! <<<<<
11.245 26.171 >>>>> run number 95 is done!!! <<<<<
11.288 26.116 81.668 >>>>> run number 96 is done!!! <<<<<
11.320 26.291 >>>>> run number 97 is done!!! <<<<<
11.121 25.893 98.933 >>>>> run number 98 is done!!! <<<<<
11.378 26.046 >>>>> run number 99 is done!!! <<<<<
11.168 26.558 69.61 >>>>> run number 100 is done!!! <<<<<

inputFileName[i] = ../scenarios/analysis_ff_05
fD fS fK

16.683 57.584 63.888 >>>>> run number 1 is done!!! <<<<<
16.676 57.619 62.704 >>>>> run number 2 is done!!! <<<<<
16.766 58.636 62.916 >>>>> run number 3 is done!!! <<<<<
17.104 58.101 68.913 >>>>> run number 4 is done!!! <<<<<
16.706 57.886 61.273 >>>>> run number 5 is done!!! <<<<<
16.817 57.506 63.7 >>>>> run number 6 is done!!! <<<<<

95

16.844 57.04 60.316 >>>>> run number 7 is done!!! <<<<<
17.134 56.537 58.727 >>>>> run number 8 is done!!! <<<<<
16.735 52.83 65.025 >>>>> run number 9 is done!!! <<<<<
16.999 57.315 65.472 >>>>> run number 10 is done!!! <<<<<
16.832 60.526 65.613 >>>>> run number 11 is done!!! <<<<<
16.929 57.678 68.123 >>>>> run number 12 is done!!! <<<<<
16.677 56.003 72.085 >>>>> run number 13 is done!!! <<<<<
17.114 53.744 67.001 >>>>> run number 14 is done!!! <<<<<
16.725 57.166 60.782 >>>>> run number 15 is done!!! <<<<<
17.092 58.152 64.588 >>>>> run number 16 is done!!! <<<<<
16.919 57.541 64.453 >>>>> run number 17 is done!!! <<<<<
16.716 57.441 59.107 >>>>> run number 18 is done!!! <<<<<
16.694 52.277 59.38 >>>>> run number 19 is done!!! <<<<<
17.129 57.155 63.779 >>>>> run number 20 is done!!! <<<<<
17.024 60.737 68.313 >>>>> run number 21 is done!!! <<<<<
16.703 57.439 62.635 >>>>> run number 22 is done!!! <<<<<
16.996 58.771 60.666 >>>>> run number 23 is done!!! <<<<<
17.033 61.183 62.738 >>>>> run number 24 is done!!! <<<<<
17.060 57.079 64.116 >>>>> run number 25 is done!!! <<<<<
16.746 60.984 66.516 >>>>> run number 26 is done!!! <<<<<
16.997 60.738 64.037 >>>>> run number 27 is done!!! <<<<<
16.928 60.767 63.179 >>>>> run number 28 is done!!! <<<<<
16.929 57.6 61.547 >>>>> run number 29 is done!!! <<<<<
16.809 57.581 60.934 >>>>> run number 30 is done!!! <<<<<
16.689 57.81 68.867 >>>>> run number 31 is done!!! <<<<<
16.824 60.735 62.074 >>>>> run number 32 is done!!! <<<<<
16.814 57.945 68.267 >>>>> run number 33 is done!!! <<<<<
16.861 57.839 63.702 >>>>> run number 34 is done!!! <<<<<
16.997 57.799 62.205 >>>>> run number 35 is done!!! <<<<<
16.800 62.341 63.705 >>>>> run number 36 is done!!! <<<<<
17.004 57.341 59.953 >>>>> run number 37 is done!!! <<<<<
16.989 57.577 59.963 >>>>> run number 38 is done!!! <<<<<
17.021 57.76 65.54 >>>>> run number 39 is done!!! <<<<<
16.714 60.777 73.869 >>>>> run number 40 is done!!! <<<<<
16.853 56.98 61.348 >>>>> run number 41 is done!!! <<<<<
17.060 60.817 62.856 >>>>> run number 42 is done!!! <<<<<
17.150 56.54 62.52 >>>>> run number 43 is done!!! <<<<<
16.738 57.713 65.925 >>>>> run number 44 is done!!! <<<<<
17.083 57.4 64.559 >>>>> run number 45 is done!!! <<<<<
16.897 60.5 71.614 >>>>> run number 46 is done!!! <<<<<
17.073 58.556 60.347 >>>>> run number 47 is done!!! <<<<<
17.081 57.928 70.296 >>>>> run number 48 is done!!! <<<<<
16.720 57.302 62.8 >>>>> run number 49 is done!!! <<<<<
17.056 57.97 62.767 >>>>> run number 50 is done!!! <<<<<
16.703 58.413 60.275 >>>>> run number 51 is done!!! <<<<<
17.008 58.714 63.552 >>>>> run number 52 is done!!! <<<<<
16.768 55.549 73.944 >>>>> run number 53 is done!!! <<<<<
16.770 57.628 68.17 >>>>> run number 54 is done!!! <<<<<
17.106 60.487 65.28 >>>>> run number 55 is done!!! <<<<<
16.869 57.684 65.081 >>>>> run number 56 is done!!! <<<<<
16.992 57.979 68.689 >>>>> run number 57 is done!!! <<<<<
17.036 57.769 64.693 >>>>> run number 58 is done!!! <<<<<
17.043 57.473 73.777 >>>>> run number 59 is done!!! <<<<<
16.738 56.831 61.37 >>>>> run number 60 is done!!! <<<<<

96

17.089 57.305 58.865 >>>>> run number 61 is done!!! <<<<<
16.663 57.365 60.769 >>>>> run number 62 is done!!! <<<<<
17.020 57.479 59.56 >>>>> run number 63 is done!!! <<<<<
16.712 57.828 59.401 >>>>> run number 64 is done!!! <<<<<
16.688 60.899 68.27 >>>>> run number 65 is done!!! <<<<<
16.709 58.085 68.571 >>>>> run number 66 is done!!! <<<<<
16.883 58.233 67.985 >>>>> run number 67 is done!!! <<<<<
16.808 57.439 62.186 >>>>> run number 68 is done!!! <<<<<
16.719 60.42 67.507 >>>>> run number 69 is done!!! <<<<<
16.697 57.178 60.031 >>>>> run number 70 is done!!! <<<<<
16.661 57.611 59.602 >>>>> run number 71 is done!!! <<<<<
16.773 61.148 71.806 >>>>> run number 72 is done!!! <<<<<
16.770 57.724 62.523 >>>>> run number 73 is done!!! <<<<<
17.001 52.572 62.019 >>>>> run number 74 is done!!! <<<<<
17.012 58.164 62.793 >>>>> run number 75 is done!!! <<<<<
16.831 57.324 66.297 >>>>> run number 76 is done!!! <<<<<
16.665 57.165 58.457 >>>>> run number 77 is done!!! <<<<<
16.734 56.914 63.989 >>>>> run number 78 is done!!! <<<<<
17.053 60.848 69.524 >>>>> run number 79 is done!!! <<<<<
16.724 57.288 63.525 >>>>> run number 80 is done!!! <<<<<
16.961 56.791 69.52 >>>>> run number 81 is done!!! <<<<<
16.774 57.553 63.993 >>>>> run number 82 is done!!! <<<<<
17.015 56.965 63.386 >>>>> run number 83 is done!!! <<<<<
16.829 57.75 62.945 >>>>> run number 84 is done!!! <<<<<
16.732 57.76 59.824 >>>>> run number 85 is done!!! <<<<<
16.752 57.771 64.561 >>>>> run number 86 is done!!! <<<<<
17.077 58.003 65.3 >>>>> run number 87 is done!!! <<<<<
17.125 56.949 59.958 >>>>> run number 88 is done!!! <<<<<
16.753 56.89 60.733 >>>>> run number 89 is done!!! <<<<<
16.765 57.286 65.609 >>>>> run number 90 is done!!! <<<<<
17.001 58.893 60.681 >>>>> run number 91 is done!!! <<<<<
17.013 57.804 67.304 >>>>> run number 92 is done!!! <<<<<
17.217 61.387 65.7 >>>>> run number 93 is done!!! <<<<<
16.704 58.174 66.509 >>>>> run number 94 is done!!! <<<<<
16.775 57.495 62.109 >>>>> run number 95 is done!!! <<<<<
16.742 57.228 70.586 >>>>> run number 96 is done!!! <<<<<
16.784 57.528 62.878 >>>>> run number 97 is done!!! <<<<<
16.909 57.615 61.463 >>>>> run number 98 is done!!! <<<<<
17.139 55.667 63.767 >>>>> run number 99 is done!!! <<<<<
16.990 57.17 64.411 >>>>> run number 100 is done!!! <<<<<

inputFileName[i] = ../scenarios/analysis_ff_06
fD

19.573 >>>>> run number 1 is done!!! <<<<<
19.504 >>>>> run number 2 is done!!! <<<<<
17.665 >>>>> run number 3 is done!!! <<<<<
19.536 >>>>> run number 4 is done!!! <<<<<
19.381 >>>>> run number 5 is done!!! <<<<<
19.383 >>>>> run number 6 is done!!! <<<<<
17.636 >>>>> run number 7 is done!!! <<<<<
19.511 >>>>> run number 8 is done!!! <<<<<
19.442 >>>>> run number 9 is done!!! <<<<<

97

19.423 >>>>> run number 10 is done!!! <<<<<
19.369 >>>>> run number 11 is done!!! <<<<<
19.378 >>>>> run number 12 is done!!! <<<<<
19.397 >>>>> run number 13 is done!!! <<<<<
17.647 >>>>> run number 14 is done!!! <<<<<
19.371 >>>>> run number 15 is done!!! <<<<<
19.367 >>>>> run number 16 is done!!! <<<<<
19.465 >>>>> run number 17 is done!!! <<<<<
19.423 >>>>> run number 18 is done!!! <<<<<
19.409 >>>>> run number 19 is done!!! <<<<<
19.415 >>>>> run number 20 is done!!! <<<<<
19.510 >>>>> run number 21 is done!!! <<<<<
19.403 >>>>> run number 22 is done!!! <<<<<
19.500 >>>>> run number 23 is done!!! <<<<<
19.413 >>>>> run number 24 is done!!! <<<<<
19.493 >>>>> run number 25 is done!!! <<<<<
19.406 >>>>> run number 26 is done!!! <<<<<
19.406 >>>>> run number 27 is done!!! <<<<<
19.401 >>>>> run number 28 is done!!! <<<<<
19.479 >>>>> run number 29 is done!!! <<<<<
19.454 >>>>> run number 30 is done!!! <<<<<
19.426 >>>>> run number 31 is done!!! <<<<<
19.390 >>>>> run number 32 is done!!! <<<<<
19.427 >>>>> run number 33 is done!!! <<<<<
19.387 >>>>> run number 34 is done!!! <<<<<
19.539 >>>>> run number 35 is done!!! <<<<<
19.503 >>>>> run number 36 is done!!! <<<<<
19.389 >>>>> run number 37 is done!!! <<<<<
17.561 >>>>> run number 38 is done!!! <<<<<
19.405 >>>>> run number 39 is done!!! <<<<<
19.430 >>>>> run number 40 is done!!! <<<<<
19.450 >>>>> run number 41 is done!!! <<<<<
19.402 >>>>> run number 42 is done!!! <<<<<
19.504 >>>>> run number 43 is done!!! <<<<<
19.419 >>>>> run number 44 is done!!! <<<<<
19.385 >>>>> run number 45 is done!!! <<<<<
19.461 >>>>> run number 46 is done!!! <<<<<
19.369 >>>>> run number 47 is done!!! <<<<<
19.404 >>>>> run number 48 is done!!! <<<<<
19.416 >>>>> run number 49 is done!!! <<<<<
19.515 >>>>> run number 50 is done!!! <<<<<
19.385 >>>>> run number 51 is done!!! <<<<<
19.413 >>>>> run number 52 is done!!! <<<<<
19.387 >>>>> run number 53 is done!!! <<<<<
19.398 >>>>> run number 54 is done!!! <<<<<
19.377 >>>>> run number 55 is done!!! <<<<<
17.598 >>>>> run number 56 is done!!! <<<<<
19.560 >>>>> run number 57 is done!!! <<<<<
17.589 >>>>> run number 58 is done!!! <<<<<
19.523 >>>>> run number 59 is done!!! <<<<<
19.394 >>>>> run number 60 is done!!! <<<<<
19.607 >>>>> run number 61 is done!!! <<<<<
19.400 >>>>> run number 62 is done!!! <<<<<
19.491 >>>>> run number 63 is done!!! <<<<<

98

19.397 >>>>> run number 64 is done!!! <<<<<
19.383 >>>>> run number 65 is done!!! <<<<<
19.465 >>>>> run number 66 is done!!! <<<<<
17.647 >>>>> run number 67 is done!!! <<<<<
19.421 >>>>> run number 68 is done!!! <<<<<
19.427 >>>>> run number 69 is done!!! <<<<<
19.386 >>>>> run number 70 is done!!! <<<<<
19.455 >>>>> run number 71 is done!!! <<<<<
19.388 >>>>> run number 72 is done!!! <<<<<
19.401 >>>>> run number 73 is done!!! <<<<<
19.420 >>>>> run number 74 is done!!! <<<<<
19.445 >>>>> run number 75 is done!!! <<<<<
17.542 >>>>> run number 76 is done!!! <<<<<
19.390 >>>>> run number 77 is done!!! <<<<<
19.402 >>>>> run number 78 is done!!! <<<<<
19.527 >>>>> run number 79 is done!!! <<<<<
19.487 >>>>> run number 80 is done!!! <<<<<
19.374 >>>>> run number 81 is done!!! <<<<<
19.424 >>>>> run number 82 is done!!! <<<<<
19.381 >>>>> run number 83 is done!!! <<<<<
19.485 >>>>> run number 84 is done!!! <<<<<
19.456 >>>>> run number 85 is done!!! <<<<<
17.582 >>>>> run number 86 is done!!! <<<<<
19.793 >>>>> run number 87 is done!!! <<<<<
19.410 >>>>> run number 88 is done!!! <<<<<
19.375 >>>>> run number 89 is done!!! <<<<<
19.379 >>>>> run number 90 is done!!! <<<<<
19.413 >>>>> run number 91 is done!!! <<<<<
19.418 >>>>> run number 92 is done!!! <<<<<
19.454 >>>>> run number 93 is done!!! <<<<<
19.374 >>>>> run number 94 is done!!! <<<<<
19.378 >>>>> run number 95 is done!!! <<<<<
19.512 >>>>> run number 96 is done!!! <<<<<
19.364 >>>>> run number 97 is done!!! <<<<<
19.406 >>>>> run number 98 is done!!! <<<<<
19.398 >>>>> run number 99 is done!!! <<<<<
19.392 >>>>> run number 100 is done!!! <<<<<

inputFileName[i] = ../scenarios/analysis_ff_07
fD fS fK

9.915 42.743 81.43 >>>>> run number 1 is done!!! <<<<<
10.288 42.351 42.351 >>>>> run number 2 is done!!! <<<<<
11.704 43.141 71.107 >>>>> run number 3 is done!!! <<<<<
10.755 42.742 80.299 >>>>> run number 4 is done!!! <<<<<
11.995 43.024 43.024 >>>>> run number 5 is done!!! <<<<<
12.933 42.913 75.406 >>>>> run number 6 is done!!! <<<<<
9.863 67.98 83.784 >>>>> run number 7 is done!!! <<<<<
10.719 24.441 83.401 >>>>> run number 8 is done!!! <<<<<
10.327 42.633 76.256 >>>>> run number 9 is done!!! <<<<<
13.156 42.849 80.611 >>>>> run number 10 is done!!! <<<<<
11.897 24.183 76.047 >>>>> run number 11 is done!!! <<<<<
12.733 24.465 70.462 >>>>> run number 12 is done!!! <<<<<

99

11.581 61.848 75.126 >>>>> run number 13 is done!!! <<<<<
10.463 63.08 77.471 >>>>> run number 14 is done!!! <<<<<
11.024 42.302 86.574 >>>>> run number 15 is done!!! <<<<<
10.610 24.408 77.229 >>>>> run number 16 is done!!! <<<<<
11.004 24.479 78.25 >>>>> run number 17 is done!!! <<<<<
9.590 42.595 74.759 >>>>> run number 18 is done!!! <<<<<
12.188 42.787 64.658 >>>>> run number 19 is done!!! <<<<<
9.897 42.39 65.49 >>>>> run number 20 is done!!! <<<<<
11.748 42.809 78.814 >>>>> run number 21 is done!!! <<<<<
10.732 42.688 42.688 >>>>> run number 22 is done!!! <<<<<
9.880 64.343 88.1 >>>>> run number 23 is done!!! <<<<<
10.189 62.43 65.243 >>>>> run number 24 is done!!! <<<<<
11.525 42.66 77.904 >>>>> run number 25 is done!!! <<<<<
11.141 60.838 77.307 >>>>> run number 26 is done!!! <<<<<
10.013 42.329 83.014 >>>>> run number 27 is done!!! <<<<<
10.849 24.34 74.382 >>>>> run number 28 is done!!! <<<<<
10.829 63.116 97.092 >>>>> run number 29 is done!!! <<<<<
10.550 63.771 67.055 >>>>> run number 30 is done!!! <<<<<
9.684 42.888 66.382 >>>>> run number 31 is done!!! <<<<<
12.026 42.631 75.941 >>>>> run number 32 is done!!! <<<<<
12.325 42.467 74.789 >>>>> run number 33 is done!!! <<<<<
11.200 42.479 75.906 >>>>> run number 34 is done!!! <<<<<
11.940 42.514 76.858 >>>>> run number 35 is done!!! <<<<<
12.298 42.659 78.018 >>>>> run number 36 is done!!! <<<<<
10.934 42.715 62.329 >>>>> run number 37 is done!!! <<<<<
10.994 24.627 76.091 >>>>> run number 38 is done!!! <<<<<
11.992 24.559 77.807 >>>>> run number 39 is done!!! <<<<<
12.074 42.532 83.433 >>>>> run number 40 is done!!! <<<<<
10.006 64.959 76.548 >>>>> run number 41 is done!!! <<<<<
11.877 24.536 70.263 >>>>> run number 42 is done!!! <<<<<
11.871 24.527 75.715 >>>>> run number 43 is done!!! <<<<<
11.696 42.614 80.334 >>>>> run number 44 is done!!! <<<<<
12.347 42.989 72.554 >>>>> run number 45 is done!!! <<<<<
12.085 42.823 75.939 >>>>> run number 46 is done!!! <<<<<
10.431 63.792 64.508 >>>>> run number 47 is done!!! <<<<<
9.545 64.463 66.065 >>>>> run number 48 is done!!! <<<<<
13.457 43.043 74.739 >>>>> run number 49 is done!!! <<<<<
11.458 42.605 42.605 >>>>> run number 50 is done!!! <<<<<
12.534 42.426 73.426 >>>>> run number 51 is done!!! <<<<<
11.367 24.387 74.823 >>>>> run number 52 is done!!! <<<<<
10.397 42.522 78.076 >>>>> run number 53 is done!!! <<<<<
10.165 62.709 78.721 >>>>> run number 54 is done!!! <<<<<
12.971 24.699 65.769 >>>>> run number 55 is done!!! <<<<<
12.273 24.488 75.774 >>>>> run number 56 is done!!! <<<<<
10.021 61.434 95.706 >>>>> run number 57 is done!!! <<<<<
9.571 42.501 74.588 >>>>> run number 58 is done!!! <<<<<
12.420 66.778 74.173 >>>>> run number 59 is done!!! <<<<<
11.495 42.79 63.614 >>>>> run number 60 is done!!! <<<<<
10.826 24.494 101.234 >>>>> run number 61 is done!!! <<<<<
10.596 24.459 74.55 >>>>> run number 62 is done!!! <<<<<
12.606 65.817 79.673 >>>>> run number 63 is done!!! <<<<<
9.921 42.764 78.559 >>>>> run number 64 is done!!! <<<<<
11.603 43.005 65.123 >>>>> run number 65 is done!!! <<<<<
12.136 43.094 74.691 >>>>> run number 66 is done!!! <<<<<

100

11.509 24.14 67.54 >>>>> run number 67 is done!!! <<<<<
10.766 42.883 76.458 >>>>> run number 68 is done!!! <<<<<
10.432 42.526 73.921 >>>>> run number 69 is done!!! <<<<<
11.899 42.672 66.769 >>>>> run number 70 is done!!! <<<<<
9.517 61.842 81.308 >>>>> run number 71 is done!!! <<<<<
10.825 62.981 77.559 >>>>> run number 72 is done!!! <<<<<
11.775 62.678 72.325 >>>>> run number 73 is done!!! <<<<<
12.559 42.982 62.041 >>>>> run number 74 is done!!! <<<<<
10.598 63.321 83.795 >>>>> run number 75 is done!!! <<<<<
10.433 24.484 81.51 >>>>> run number 76 is done!!! <<<<<
10.042 42.806 74.585 >>>>> run number 77 is done!!! <<<<<
10.854 42.656 72.583 >>>>> run number 78 is done!!! <<<<<
11.239 62.582 76.662 >>>>> run number 79 is done!!! <<<<<
10.135 42.761 76.993 >>>>> run number 80 is done!!! <<<<<
10.883 62.534 82.029 >>>>> run number 81 is done!!! <<<<<
10.851 42.554 61.757 >>>>> run number 82 is done!!! <<<<<
10.389 42.552 60.975 >>>>> run number 83 is done!!! <<<<<
10.760 42.651 76.391 >>>>> run number 84 is done!!! <<<<<
10.298 24.286 75.972 >>>>> run number 85 is done!!! <<<<<
10.734 24.386 71.426 >>>>> run number 86 is done!!! <<<<<
12.554 67.206 72.479 >>>>> run number 87 is done!!! <<<<<
11.702 42.808 61.892 >>>>> run number 88 is done!!! <<<<<
9.816 64.994 100.453 >>>>> run number 89 is done!!! <<<<<
11.477 62.439 78.44 >>>>> run number 90 is done!!! <<<<<
12.052 24.419 74.576 >>>>> run number 91 is done!!! <<<<<
10.096 66.219 79.022 >>>>> run number 92 is done!!! <<<<<
13.058 65.336 69.188 >>>>> run number 93 is done!!! <<<<<
11.388 24.489 76.228 >>>>> run number 94 is done!!! <<<<<
10.895 42.671 76.44 >>>>> run number 95 is done!!! <<<<<
9.709 42.654 79.429 >>>>> run number 96 is done!!! <<<<<
9.674 42.721 42.721 >>>>> run number 97 is done!!! <<<<<
12.807 24.575 42.537 >>>>> run number 98 is done!!! <<<<<
10.385 55.356 66.709 >>>>> run number 99 is done!!! <<<<<
11.040 63.754 74.267 >>>>> run number 100 is done!!! <<<<<

inputFileName[i] = ../scenarios/analysis_ff_08
fD fS fK

20.615 59.706 69.152 >>>>> run number 1 is done!!! <<<<<
20.940 60.291 70.478 >>>>> run number 2 is done!!! <<<<<
21.002 60.726 78.814 >>>>> run number 3 is done!!! <<<<<
20.671 >>>>> run number 4 is done!!! <<<<<
21.206 >>>>> run number 5 is done!!! <<<<<
21.077 >>>>> run number 6 is done!!! <<<<<
20.607 60.355 75.89 >>>>> run number 7 is done!!! <<<<<
20.645 >>>>> run number 8 is done!!! <<<<<
21.154 60.834 72.936 >>>>> run number 9 is done!!! <<<<<
20.962 >>>>> run number 10 is done!!! <<<<<
21.218 >>>>> run number 11 is done!!! <<<<<
21.367 62.029 67.607 >>>>> run number 12 is done!!! <<<<<
20.830 60.079 73.239 >>>>> run number 13 is done!!! <<<<<
21.172 >>>>> run number 14 is done!!! <<<<<
21.127 >>>>> run number 15 is done!!! <<<<<

101

21.079 >>>>> run number 16 is done!!! <<<<<
21.178 60.836 73.884 >>>>> run number 17 is done!!! <<<<<
21.401 62.093 71.022 >>>>> run number 18 is done!!! <<<<<
21.065 >>>>> run number 19 is done!!! <<<<<
21.043 60.521 71.346 >>>>> run number 20 is done!!! <<<<<
21.292 >>>>> run number 21 is done!!! <<<<<
21.280 >>>>> run number 22 is done!!! <<<<<
21.182 >>>>> run number 23 is done!!! <<<<<
21.344 61.812 70.282 >>>>> run number 24 is done!!! <<<<<
21.019 >>>>> run number 25 is done!!! <<<<<
21.160 60.591 73.44 >>>>> run number 26 is done!!! <<<<<
21.410 >>>>> run number 27 is done!!! <<<<<
21.352 62.047 71.837 >>>>> run number 28 is done!!! <<<<<
21.200 60.606 71.475 >>>>> run number 29 is done!!! <<<<<
21.378 61.413 77.461 >>>>> run number 30 is done!!! <<<<<
21.299 >>>>> run number 31 is done!!! <<<<<
21.414 61.874 73.498 >>>>> run number 32 is done!!! <<<<<
21.051 49.952 80.462 >>>>> run number 33 is done!!! <<<<<
21.081 60.999 64.283 >>>>> run number 34 is done!!! <<<<<
21.351 61.451 74.278 >>>>> run number 35 is done!!! <<<<<
21.270 >>>>> run number 36 is done!!! <<<<<
20.578 60.188 70.706 >>>>> run number 37 is done!!! <<<<<
20.948 >>>>> run number 38 is done!!! <<<<<
20.740 >>>>> run number 39 is done!!! <<<<<
20.866 >>>>> run number 40 is done!!! <<<<<
20.608 59.94 72.303 >>>>> run number 41 is done!!! <<<<<
21.143 >>>>> run number 42 is done!!! <<<<<
21.243 >>>>> run number 43 is done!!! <<<<<
21.381 62.068 72.969 >>>>> run number 44 is done!!! <<<<<
20.992 >>>>> run number 45 is done!!! <<<<<
21.264 61.306 78.568 >>>>> run number 46 is done!!! <<<<<
21.343 61.996 73.531 >>>>> run number 47 is done!!! <<<<<
21.162 >>>>> run number 48 is done!!! <<<<<
20.991 >>>>> run number 49 is done!!! <<<<<
21.371 62.055 72.784 >>>>> run number 50 is done!!! <<<<<
21.376 62.036 71.022 >>>>> run number 51 is done!!! <<<<<
21.152 60.944 71.18 >>>>> run number 52 is done!!! <<<<<
20.806 >>>>> run number 53 is done!!! <<<<<
20.869 60.744 71.497 >>>>> run number 54 is done!!! <<<<<
21.320 >>>>> run number 55 is done!!! <<<<<
20.727 60.409 70.569 >>>>> run number 56 is done!!! <<<<<
21.076 61.077 71.153 >>>>> run number 57 is done!!! <<<<<
20.852 >>>>> run number 58 is done!!! <<<<<
20.827 >>>>> run number 59 is done!!! <<<<<
20.959 >>>>> run number 60 is done!!! <<<<<
21.075 >>>>> run number 61 is done!!! <<<<<
21.181 61.212 71.141 >>>>> run number 62 is done!!! <<<<<
20.845 >>>>> run number 63 is done!!! <<<<<
21.377 >>>>> run number 64 is done!!! <<<<<
21.157 60.738 71.707 >>>>> run number 65 is done!!! <<<<<
21.454 >>>>> run number 66 is done!!! <<<<<
21.355 61.704 72.217 >>>>> run number 67 is done!!! <<<<<
21.205 61.253 64.476 >>>>> run number 68 is done!!! <<<<<
20.734 >>>>> run number 69 is done!!! <<<<<

102

21.184 61.244 78.017 >>>>> run number 70 is done!!! <<<<<
21.369 >>>>> run number 71 is done!!! <<<<<
21.112 >>>>> run number 72 is done!!! <<<<<
20.908 60.773 76.097 >>>>> run number 73 is done!!! <<<<<
21.327 >>>>> run number 74 is done!!! <<<<<
21.254 >>>>> run number 75 is done!!! <<<<<
21.054 >>>>> run number 76 is done!!! <<<<<
20.667 60.434 70.872 >>>>> run number 77 is done!!! <<<<<
21.129 61.01 69.042 >>>>> run number 78 is done!!! <<<<<
21.137 >>>>> run number 79 is done!!! <<<<<
21.149 61.114 74.201 >>>>> run number 80 is done!!! <<<<<
21.248 >>>>> run number 81 is done!!! <<<<<
21.165 >>>>> run number 82 is done!!! <<<<<
21.390 >>>>> run number 83 is done!!! <<<<<
21.222 >>>>> run number 84 is done!!! <<<<<
21.435 >>>>> run number 85 is done!!! <<<<<
20.641 >>>>> run number 86 is done!!! <<<<<
20.746 60.029 71.692 >>>>> run number 87 is done!!! <<<<<
21.280 >>>>> run number 88 is done!!! <<<<<
21.391 61.848 74.456 >>>>> run number 89 is done!!! <<<<<
20.732 >>>>> run number 90 is done!!! <<<<<
21.345 >>>>> run number 91 is done!!! <<<<<
21.257 >>>>> run number 92 is done!!! <<<<<
20.893 60.813 79.769 >>>>> run number 93 is done!!! <<<<<
21.367 >>>>> run number 94 is done!!! <<<<<
20.561 >>>>> run number 95 is done!!! <<<<<
21.401 62.023 64.501 >>>>> run number 96 is done!!! <<<<<
20.605 60.155 85.747 >>>>> run number 97 is done!!! <<<<<
21.186 >>>>> run number 98 is done!!! <<<<<
21.159 >>>>> run number 99 is done!!! <<<<<
21.376 61.961 68.462 >>>>> run number 100 is done!!! <<<<<

103

APPENDIX C. JAVA CODE

The source code of the simulation model is free for all to use. The simulation

model consists of 50 Java classes, out of which the longest one has almost 600 lines of

code. Therefore, it seems useless to provide a printout of the source code. Further

information, downloads, and up to date information may be found at

http://diana.cs.nps.navy.mil/~wlehmann.

Any comments, recommendations, complaints, etc. are highly appreciated. Feel

free to use my email address: wolfganglehmann@hotmail.com.

104

THIS PAGE INTENTIONALLY LEFT BLANK

105

LIST OF REFERENCES

Bracken, J., Kress, M., and Rosenthal, R.E., Warfare Modeling, John Wiley &
Sons, New York, 1996.

Brown, L.P., “Agent Based Simulation as an Exploratory Tool in the Study of
Human Dimension,” Masters Thesis, Naval Postgraduate School, Monterey, CA,
March 2000.

Buss, A.H., “Modeling with Event Graphs,” Proceedings of the 28th Conference
on Winter Simulation, Coronado, CA, 1996.

Buss, A.H., “Basic Event Graph Modeling,” Technical Notes, 2001,
[http://diana.gl.nps.navy.mil/~ahbuss/papers/BasicEventGraphModeling.pdf].

Buss, A.H., “Discrete Event Programming with Simkit,” Technical Notes, 2001,
[http://diana.or.nps.navy.mil/~ahbuss/papers/Discrete%20Event%20Programming
%20with%20Simkit.pdf, June 2006].

Buss, A.H., “Component Based Simulation Modeling with Simkit,” Proceedings
of the 34th conference on Winter Simulation, San Diego, CA, 2002.

Buss, A.H. and Sanchez, P.J., “Building Complex Models with LEGOS (Listener
Event Graph Objects),” Proceedings of the 34th Conference on Winter
Simulation, San Diego, CA, 2002.

Buss, A.H. and Sanchez, P.J., “Simple Movement and Detection in Discrete Event
Simulation,” Proceedings of the 2005 Winter Simulation Conference,
Orlando, FL, 2005, [http://www.informs-cs.org/wsc05papers/118.pdf, June 2006].

Dewar, J.A., Gillogly, J.J., and Juncossa, M.L., “Non-Monotonicity, Chaos and
Combat Models,” Report R-3995-RC, Rand Corp., Santa Monica, CA, 1991.

Erlenbruch, T., “Agent-Based Simulation of German Peacekeeping Operations for
Units up to Platoon Level,” Masters Thesis, Naval Postgraduate School,
Monterey, CA, March 2002.

Federal Minister of Defence, “Defence Policy Guidelines,” Berlin 2003,
[http://www.bmvg.de/portal/PA_1_0_LT/PortalFiles/C1256F1200608B1B/W268
AHEH510INFOEN/VPR_en.pdf?yw_repository=youatweb, June 2006].

Federal Minister of Defence, “Bundeswehr Concept,” Berlin 2004,
[http://www.bmvg.de/portal/PA_1_0_LT/PortalFiles/C1256F1200608B1B/W268
ADVU038INFOEN/KDB_en.pdf?yw_repository=youatweb, June 2006].

Gell-Mann, M., The Quark and the Jaguar Adventures in the Simple and the
Complex, New York, W.J.Freemann and Company, New York, 1994.

106

Hamilton, L.C., Regression with Graphics, Wadsworth, Belmont, CA, 1992.

Holland, J., Hidden Order, Perseus Books, Cambridge, MA, 1995.

Horne, G. and Johnson, S., “Maneuver Warfare Science 2002,” USMC Project
Albert, Quantico, VA, 2002.

Hunter, D., Beginning XML, Wrox Press Ltd., Birmingham, UK, 2001.

Ilachinsky, A. “Irreducible Semi-Autonomous Adaptive Combat (ISAAC),”
Center for Naval Analysis, Alexandria, VA, 1997.

Ipecki, A.I., “How Agent Based Models Can Be utilized to Explore and Exploit
Non-Linearitiy and Intangibilities I Guerilla Warfare,” Masters Thesis,
Naval Postgraduate School, Monterey, CA, June 2002.

Kim, L., The Official XMLSpy Handbook, Wiley Publishing Inc., Indianapolis,
IN, 2003.

Law, A.M. and Kelton, W.D., Simulation Modeling and Analysis, McGraw-Hill,
Boston, MA, 2000.

Lorenz, P., Lecture Notes for the course “Simulation and Animation,”
March 2006, [http://isgwww.cs.uni-magdeburg.de/pelo/sa/sim1.php].

Lucas, T.W., Sanchez, S.M., Brown, L.P., and Vinyard, W.C., “Better Designs for
High-Dimensional Explorations of Distillations,” in [Horne, 2002].

Margolis, M., “Upgradeable Operational Availability Forecasting Tool for the
U.S. Navy P 3 Replacement Aircraft,” Masters Thesis, Naval Postgraduate
School, Monterey, CA, 2003.

Nelson, J.J. et al., “Measures of Effectiveness for Humanitarian Assistance
Operations,” Center for Naval Analyses, Alexandria, VA; 1996.

Ray, E.T., Learning XML, O’Reilly & Associates Inc., Sebastopol, CA, 2001.

Savich, W., Java. An Introduction to Computer Science and Programming,
Prentice Hall, Upper Saddle River, NJ, 2001.

Stolte, Maj M., “Modeling and Simulation in the German Army,” 2001
[http://www.cdes.terre.defense.gouv.fr/sitefr/Objdoc/Numeros/fev_2001/
en/art13.pdf, March 2003].

Venables, W.N. and Ripley, B.D., Modern Applied Statistics with
S-PLUS, Springer, New York, 2000.

Waldrop, M. M., Complexity: the Emerging Science at the Edge of Order and
Chaos, Touchstone, New York, 1992.

107

Weiss, G., Multiagent Systems, MIT Press, Cambridge, MA, 1999.

Wellbrink, J., “Modeling Reduced Human Performance as a Complex Adaptive
System,” Ph.D. Dissertation, Naval Postgraduate School, Monterey, CA,
September 2003.

Wooldridge, M., An Introduction to Multiagent Systems, John Wiley and Sons,
Chinchester, West Sussex, 2002.

108

THIS PAGE INTENTIONALLY LEFT BLANK

109

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Tom Lucas
Department of Operations Research
Naval Postgraduate School
Monterey, California

4. Dr. Arnold Buss
MOVES Institute
Naval Postgraduate School
Monterey, California

5. Dr. Susan Sanchez
Department of Operations Research
Naval Postgraduate School
Monterey, California

6. OTL Dr. Wellbrink
Heeresführungskommando
Koblenz, Germany

7. Capt Michael Margolis
Studies and Analysis Division, MCCDC, Code 19
Quantico, Virginia

